8

How I can convert DatetimeIndex to datetime to plot the data's in the next step?

I have a DatetimeIndex list, looks like the following example

[<bound method DatetimeIndex.to_datetime of DatetimeIndex(['2016-07-04 16:19:35', '2016-07-04 16:19:35',
           '2016-07-04 16:19:35', '2016-07-04 16:19:34',
           '2016-07-04 16:19:34', '2016-07-04 16:19:34',
           '2016-07-04 16:19:33', '2016-07-04 16:19:33',
           '2016-07-04 16:19:32', '2016-07-04 16:19:32',
           ...
           '2016-07-30 02:59:38', '2016-07-31 03:09:07',
           '2016-07-31 03:09:03', '2016-07-31 03:09:03',
           '2016-07-31 03:09:55', '2016-07-31 03:09:54',
           '2016-07-31 03:09:54', '2016-07-31 02:59:39',
           '2016-07-31 02:59:38', '2016-07-31 02:59:38'],
          dtype='datetime64[ns]', name='event_timestamp', length=3981364, freq=None)>]

and I need it, in this format

[datetime.datetime(2018, 10, 17, 13, 13, 39, 755816), datetime.datetime(2018, 10, 17, 13, 14, 39, 755816), datetime.datetime(2018, 10, 17, 13, 15, 39, 755816), datetime.datetime(2018, 10, 17, 13, 16, 39, 755816), datetime.datetime(2018, 10, 17, 13, 17, 39, 755816), datetime.datetime(2018, 10, 17, 13, 18, 39, 755816), datetime.datetime(2018, 10, 17, 13, 19, 39, 755816), datetime.datetime(2018, 10, 17, 13, 20, 39, 755816), datetime.datetime(2018, 10, 17, 13, 21, 39, 755816), datetime.datetime(2018, 10, 17, 13, 22, 39, 755816), datetime.datetime(2018, 10, 17, 13, 23, 39, 755816), datetime.datetime(2018, 10, 17, 13, 24, 39, 755816)]

My Python Code looks like this example.

timeStamp = [data1[data1.columns[0]].index]
dateTime = []

for i in timeStamp:
    dateTime = i.to_datetime

I hope you can help me, to fix my little problem.

1 Answer 1

15

matplotlib working with pandas datetimes nice, but if really need convert it to python datetimes use DatetimeIndex.to_pydatetime:

idx = pd.DatetimeIndex(['2016-07-04 16:19:35', '2016-07-04 16:19:35',
           '2016-07-04 16:19:35', '2016-07-04 16:19:34',
           '2016-07-04 16:19:34', '2016-07-04 16:19:34',
           '2016-07-04 16:19:33', '2016-07-04 16:19:33',
           '2016-07-04 16:19:32', '2016-07-04 16:19:32'])

print (idx)
DatetimeIndex(['2016-07-04 16:19:35', '2016-07-04 16:19:35',
               '2016-07-04 16:19:35', '2016-07-04 16:19:34',
               '2016-07-04 16:19:34', '2016-07-04 16:19:34',
               '2016-07-04 16:19:33', '2016-07-04 16:19:33',
               '2016-07-04 16:19:32', '2016-07-04 16:19:32'],
              dtype='datetime64[ns]', freq=None)

print (idx.to_pydatetime())
[datetime.datetime(2016, 7, 4, 16, 19, 35)
 datetime.datetime(2016, 7, 4, 16, 19, 35)
 datetime.datetime(2016, 7, 4, 16, 19, 35)
 datetime.datetime(2016, 7, 4, 16, 19, 34)
 datetime.datetime(2016, 7, 4, 16, 19, 34)
 datetime.datetime(2016, 7, 4, 16, 19, 34)
 datetime.datetime(2016, 7, 4, 16, 19, 33)
 datetime.datetime(2016, 7, 4, 16, 19, 33)
 datetime.datetime(2016, 7, 4, 16, 19, 32)
 datetime.datetime(2016, 7, 4, 16, 19, 32)]
Sign up to request clarification or add additional context in comments.

2 Comments

it's return in numpy.ndarray. to convert into python list user required to typecast it. that is list(idx.to_pydatetime())
pandas datetimes is easy to use, but has really bad performance when it comes to have ultra-fast operations.

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.