I want to do conditional selection for row 6 in origin dataframe
original dataframe:
B1 B2 B3 B4 BCS ULCA MIMO
3 26A 1A 0,1 . 1A
4 28A 1A 0,1 . 1A
5 19A 3A 1A 0 . 1A, 3A
6 3A 1A 0,1 . 1A, 3A, 1A-3A
Step1. Do row extend for BCS and MIMO
B1 B2 B3 B4 BCS ULCA MIMO
4 26A 1A 0 . 1A
5 26A 1A 1 . 1A
6 28A 1A 0 . 1A
7 28A 1A 1 . 1A
8 19A 3A 1A 0 . 1A
9 19A 3A 1A 0 . 3A
10 3A 1A 0 . 1A
11 3A 1A 1 . 1A
12 3A 1A 0 . 3A
13 3A 1A 1 . 3A
14 3A 1A 0 . 1A-3A
15 3A 1A 1 . 1A-3A
Step.2 And then contrast column B1-B4 with MIMO, if it's equal: then put 4 in new column(Bx_m), if not, put 2
cols = ['B1','B2','B3','B4']
arr = np.where(b[cols].eq(b['MIMO'], axis=0), '4','2')
b = b.join(pd.DataFrame(arr, columns=cols, index=b.index).add_suffix('_m'))
B1 B2 B3 B4 BCS ULCA MIMO B1_m B2_m B3_m B4_m
4 26A 1A 0 . 1A 2 4 2 2
5 26A 1A 1 . 1A 2 4 2 2
6 28A 1A 0 . 1A 2 4 2 2
7 28A 1A 1 . 1A 2 4 2 2
8 19A 3A 1A 0 . 1A 2 2 4 2
9 19A 3A 1A 0 . 3A 2 4 2 2
10 3A 1A 0 . 1A 2 4 2 2
11 3A 1A 1 . 1A 2 4 2 2
12 3A 1A 0 . 3A 4 2 2 2
13 3A 1A 1 . 3A 4 2 2 2
14 3A 1A 0 . 1A-3A 2 2 2 2
15 3A 1A 1 . 1A-3A 2 2 2 2
Requirements
But here's an exceptional requirements for the format with row 6 in origin dataframe.
Rules:
Each values in MIMO alternate fill in 4 in correspond Bx_m
If there's value for two value together(1A-3A), then just fill in 4 in Bx_m simultaneously
That is:
If the value format is like 1A, 3A, 1A-3A in MIMO column (instead of 1A, 3A)
Then the output only need to keep 1A-3A in Step.1
And fill in 4 in B1_m and B2_n columns simultaneously in Step.2
Original data:
B1 B2 B3 B4 BCS ULCA MIMO
6 3A 1A 0,1 . 1A, 3A, 1A-3A
Original output(wants to change): (6 rows)
B1 B2 B3 B4 BCS ULCA MIMO B1_m B2_m B3_m B4_m
10 3A 1A 0 . 1A 2 4 2 2
11 3A 1A 1 . 1A 2 4 2 2
12 3A 1A 0 . 3A 4 2 2 2
13 3A 1A 1 . 3A 4 2 2 2
14 3A 1A 0 . 1A-3A 2 2 2 2
15 3A 1A 1 . 1A-3A 2 2 2 2
Require target: (only 2 rows. B1_m & B2_m both fill in 4)
B1 B2 B3 B4 BCS ULCA MIMO B1_m B2_m B3_m B4_m
14 3A 1A 0 . 1A-3A 4 4 2 2
15 3A 1A 1 . 1A-3A 4 4 2 2
Please help me how to solve it. Thanks.
Update
df = pd.concat([b1.set_index('index'),b2.set_index('index')]).sort_index()
print(df)
B1 B2 B3 B4 BCS ULCA MIMO B1_m B2_m B3_m B4_m
index
0 42A 19A 0 . . 2 2 2 2
1 18A 1A 0 . 1A 2 4 2 2
10 3A 1A 0 . 3A 4 2 2 2
100 41A 28A 3A 0 . 3A 2 2 4 2
101 41A 28A 3A 0 . 41A 4 2 2 2
102 42A 28A 3A 0 . 3A 2 2 4 2
103 42A 41A 3A 0 . 3A 2 2 4 2
104 42A 41A 3A 0 . 41A 2 4 2 2
105 41C 3A 0 . 3A 2 4 2 2
106 41C 3A 0 . 41C 4 2 2 2
107 41C 3A 0 . 3A-41C 4 4 2 2
108 42C 3A 0 . 3A 2 4 2 2
109 42C 41A 0 . 41A 2 4 2 2
11 3A 1A 1 . 3A 4 2 2 2