I was asked a question in interview, how synchronization is done in shared memory. I told Take a struct. In that you have a flag and a data. Test the flag and change the data. I took the following program from internet as below-. Can anyone tell if there is better way of synchronization in shared memory
#define NOT_READY -1
#define FILLED 0
#define TAKEN 1
struct Memory {
int status;
int data[4];
};
Assume that the server and client are in the current directory. The server uses ftok() to generate a key and uses it for requesting a shared memory. Before the shared memory is filled with data, status is set to NOT_READY. After the shared memory is filled, the server sets status to FILLED. Then, the server waits until status becomes TAKEN, meaning that the client has taken the data.
The following is the server program. Click here to download a copy of this server program server.c.
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "shm-02.h"
void main(int argc, char *argv[])
{
key_t ShmKEY;
int ShmID;
struct Memory *ShmPTR;
if (argc != 5) {
printf("Use: %s #1 #2 #3 #4\n", argv[0]);
exit(1);
}
ShmKEY = ftok(".", 'x');
ShmID = shmget(ShmKEY, sizeof(struct Memory), IPC_CREAT | 0666);
if (ShmID < 0) {
printf("*** shmget error (server) ***\n");
exit(1);
}
printf("Server has received a shared memory of four integers...\n");
ShmPTR = (struct Memory *) shmat(ShmID, NULL, 0);
if ((int) ShmPTR == -1) {
printf("*** shmat error (server) ***\n");
exit(1);
}
printf("Server has attached the shared memory...\n");
ShmPTR->status = NOT_READY;
ShmPTR->data[0] = atoi(argv[1]);
ShmPTR->data[1] = atoi(argv[2]);
ShmPTR->data[2] = atoi(argv[3]);
ShmPTR->data[3] = atoi(argv[4]);
printf("Server has filled %d %d %d %d to shared memory...\n",
ShmPTR->data[0], ShmPTR->data[1],
ShmPTR->data[2], ShmPTR->data[3]);
ShmPTR->status = FILLED;
printf("Please start the client in another window...\n");
while (ShmPTR->status != TAKEN)
sleep(1);
printf("Server has detected the completion of its child...\n");
shmdt((void *) ShmPTR);
printf("Server has detached its shared memory...\n");
shmctl(ShmID, IPC_RMID, NULL);
printf("Server has removed its shared memory...\n");
printf("Server exits...\n");
exit(0);
}
The client part is similar to the server. It waits until status is FILLED. Then, the clients retrieves the data and sets status to TAKEN, informing the server that data have been taken. The following is the client program. Click here to download a copy of this server program client.c.
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "shm-02.h"
void main(void)
{
key_t ShmKEY;
int ShmID;
struct Memory *ShmPTR;
ShmKEY = ftok(".", 'x');
ShmID = shmget(ShmKEY, sizeof(struct Memory), 0666);
if (ShmID < 0) {
printf("*** shmget error (client) ***\n");
exit(1);
}
printf(" Client has received a shared memory of four integers...\n");
ShmPTR = (struct Memory *) shmat(ShmID, NULL, 0);
if ((int) ShmPTR == -1) {
printf("*** shmat error (client) ***\n");
exit(1);
}
printf(" Client has attached the shared memory...\n");
while (ShmPTR->status != FILLED)
;
printf(" Client found the data is ready...\n");
printf(" Client found %d %d %d %d in shared memory...\n",
ShmPTR->data[0], ShmPTR->data[1],
ShmPTR->data[2], ShmPTR->data[3]);
ShmPTR->status = TAKEN;
printf(" Client has informed server data have been taken...\n");
shmdt((void *) ShmPTR);
printf(" Client has detached its shared memory...\n");
printf(" Client exits...\n");
exit(0);
}
int main.