I have to train a GAN network with Generator and Discriminator. My Generator Network is as below.
def Generator(image_shape=(512,512,3):
inputs = Input(image_shape)
# 5 convolution Layers
# 5 Deconvolution Layers along with concatenation
# output shape is (512,512,3)
model=Model(inputs=inputs,outputs=outputs, name='Generator')
return model, output
My Discriminator Network is as below. The first step in Discriminator network is that I have to concatenate the input of discriminator with output of Generator.
def Discriminator(Generator_output, image_shape=(512,512,3)):
inputs=Input(image_shape)
concatenated_input=concatenate([Generator_output, inputs], axis=-1)
# Now start applying Convolution Layers on concatenated_input
# Deconvolution Layers
return Model(inputs=inputs,outputs=outputs, name='Discriminator')
Initiating the Architectures
G, Generator_output=Generator(image_shape=(512,512,3))
G.summary
D=Discriminator(Generator_output, image_shape=(512,512,3))
D.summary()
My Problem is when I pass concatenated_input to convolution layers it gets me the following error.
Graph disconnected: cannot obtain value for tensor Tensor("input_1:0", shape=(?, 512, 512, 3), dtype=float32) at layer "input_1". The following previous layers were accessed without issue: []
If I remove the concatenation layer it works perfectly but why it's not working after concatenation layer although the shape of inputs and Generator_output in concatenation is also same i.e. (512,512,3).