I am trying to use a function (from another module) inside tensorflow. The function accepts a numpy array and returns the changepoints. My main goal is to deploy this model on tensorflow serving. I am running into error
AttributeError: 'DType' object has no attribute 'type'
There are 2 functions, one is create_data() that creates a numpy array and returns it, another is change() which accepts numpy array and uses the before mentioned function to return changepoints. I have created a placeholder to accept input data, an operation to execute the function. Problem is, if i try to send data through placeholder, i run into error. If i send the data directly into the function, it runs. Following is my code.
def create_data():
np.random.seed(0)
size = 100
mean_a = 0.0
mean_b = 10.0
mean_c = 0
var = 0.1
data_a = np.random.normal(mean_a, var, size)
data_b = np.random.normal(mean_b, var, size)
data_c = np.random.normal(mean_c, var, size)
data = np.concatenate([data_a, data_b, data_c])
return data
def change(data):
# what else i tried
# data = np.array(data, dtype=np.float)
# above line gives another error mentioned after code
cpts = (pelt(normal_mean(x, np.var(x)), len(x)))
return cpts
sess = tf.Session()
x = tf.placeholder(tf.float32, shape=[300, ], name="myInput")
y = tf.convert_to_tensor(change(x),np.float32,name="myOutput")
z = sess.run(y,feed_dict={x:create_data()})
If i try the code data = np.array(data, dtype=np.float) in the function change(), it gives me error
ValueError: setting an array element with a sequence.
I also tried data = np.hstack((data)).astype(np.float) and data = np.vstack((data)).astype(np.float) but it runs into a separate error that says use tf.map_fn. I also tried to use tf.eval() to convert the numbers but i couldn't get them to run inside a function with placeholders.
But if i send in the output directly,
y = tf.convert_to_tensor(change(create_data()),np.float32,name="myOutput")
It works.
How should i send in the input to make it work?
EDIT: The function in question is this if anyone wants to know.