I am new to using parallel processing for data analysis. I have a fairly large array and I want to apply a function to each index of said array.
Here is the code I have so far:
import numpy as np
import statsmodels.api as sm
from statsmodels.regression.quantile_regression import QuantReg
import multiprocessing
from functools import partial
def fit_model(data,q):
#data is a 1-D array holding precipitation values
years = np.arange(1895,2018,1)
res = QuantReg(exog=sm.add_constant(years),endog=data).fit(q=q)
pointEstimate = res.params[1] #output slope of quantile q
return pointEstimate
#precipAll is an array of shape (1405*621,123,12) (longitudes*latitudes,years,months)
#find all indices where there is data
nonNaN = np.where(~np.isnan(precipAll[:,0,0]))[0] #481631 indices
month = 4
#holder array for results
asyncResults = np.zeros((precipAll.shape[0])) * np.nan
def saveResult(result,pos):
asyncResults[pos] = result
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=20) #my server has 24 CPUs
for i in nonNaN:
#use partial so I can also pass the index i so the result is
#stored in the expected position
new_callback_function = partial(saveResult, pos=i)
pool.apply_async(fit_model, args=(precipAll[i,:,month],0.9),callback=new_callback_function)
pool.close()
pool.join()
When I ran this, I stopped it after it took longer than had I not used multiprocessing at all. The function, fit_model, is on the order of 0.02 seconds, so could the overhang associated with apply_async be causing the slowdown? I need to maintain order of the results as I am plotting this data onto a map after this processing is done. Any thoughts on where I need improvement is greatly appreciated!