2

I have (more than) two dataframes:

In [22]: df = pd.DataFrame({'database' : ['db1', 'db2', 'db3']})                                                                                                                                                             

In [23]: df1 = pd.DataFrame({'database' : ['db1', 'db2', 'db3']})                                                                                                                                                            

In [24]: df2 = pd.DataFrame({'database' : ['db2', 'db3', 'db4']})                                                                                                                                                            

In [25]: df1                                                                                                                                                                                                                 
Out[25]: 
  database
0      db1
1      db2
2      db3

In [26]: df2                                                                                                                                                                                                                 
Out[26]: 
  database
0      db2
1      db3
2      db4

What I want as output is dataframe in this format:

Out[45]: 
  database database
0      db1         
1      db2      db2
2      db3      db3
3               db4

I manage to get it in this format like this:

df1.index = df1.database.values.ravel()
df2.index = df2.database.values.ravel()
pd.concat([df1, df2], axis=1).fillna('').reset_index(drop=True)                                                                                                                                                              

But I think there must be better solution than this trick with ravel() function.

2 Answers 2

2

Use DataFrame.set_index with drop=False:

df = (pd.concat([df1.set_index('database', drop=False), 
                 df2.set_index('database', drop=False)], axis=1)
        .fillna('')
        .reset_index(drop=True))
print (df)
  database database
0      db1         
1      db2      db2
2      db3      db3
3               db4

More dynamic solution with list comprehension:

dfs = [df, df1, df2]
dfs1 = [x.set_index('database', drop=False) for x in dfs]
df = (pd.concat(dfs1, axis=1)
        .fillna('')
        .reset_index(drop=True))
print (df)
  database database database
0      db1      db1         
1      db2      db2      db2
2      db3      db3      db3
3                        db4
Sign up to request clarification or add additional context in comments.

Comments

0

You can create a series and append it as a row to your data frame and then shift the 2nd column by 1. Here is an example:

df = pd.concat([df1, df2], axis = 1)
import numpy as np
s = pd.Series([np.NaN, np,NaN], index = ['database', 'database1'])
df.append(s, ignore_index = True)
df['database1'] = df['database1'].shift(1)
df.fillna('')

This will generate expected output. Hope this helps!

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.