I think that the most efficient way is to do an aggregation and then build a new dataframe. That way you avoid a costly explode.
First, let's create the dataframe. BTW, it's always nice to provide the code to do it when you ask a question. This way we can reproduce your problem in seconds.
val df = Seq((1, 1, 0, 0, 1), (1, 1, 5, 0, 0),
(0, 1, 0, 6, 0), (0, 1, 0, 4, 3))
.toDF("output_label", "ID", "C1", "C2", "C3")
Then we build the list of columns that we are interested in, the aggregations, and compute the result.
val cols = (1 to 3).map(i => s"C$i")
val aggs = cols.map(name => sum(col(name)).as(name))
val agg_df = df.agg(aggs.head, aggs.tail :_*) // See the note below
agg_df.show
+---+---+---+
| C1| C2| C3|
+---+---+---+
| 5| 10| 4|
+---+---+---+
We almost have what we need, we just need to collect the data and build a new dataframe:
val agg_row = agg_df.first
cols.map(name => name -> agg_row.getAs[Long](name))
.toDF("column", "sum")
.show
+------+---+
|column|sum|
+------+---+
| C1| 5|
| C2| 10|
| C3| 4|
+------+---+
EDIT:
NB: df.agg(aggs.head, aggs.tail :_*) may seem strange. The idea is simply to compute all the aggregations computed in aggs. One would expect something more simple like df.agg(aggs : _*). Yet the signature of the agg method is as follows:
def agg(expr: org.apache.spark.sql.Column,exprs: org.apache.spark.sql.Column*)
maybe to ensure that at least one column is used, and this is why you need to split aggs in aggs.head and aggs.tail.