In Python, I would like to search through all rows in the dataframe with two possible paths (dataframe is populated from csv files). If the 'Group' column for a given row is zero, move that row's data to the next row of a new dataframe using the 'Channel_1' and 'Data_1' columns. If the 'Group' column for a given row is non-zero, then get all three rows with the same 'Group' column value (also identified by 'sub-group' column as 1, 2 or 3) and add to the next row of the new dataframe.
Code to generate dataframe from csv file:
for name in glob.glob(search_string):
r_file = pd.read_csv(name)
Current Data Format:
Channel_Num Group Sub_Group Data
1000 1 1 100
1001 1 2 105
1002 1 3 110
1003 0 0 200
1004 2 1 400
1005 2 2 405
1006 2 3 410
1007 0 0 500
Desired Data Format:
Group Channel_1 Data_1 Channel_2 Data_2 Channel_3 Data_3
1 1000 100 1001 105 1002 110
0 1003 200 NaN NaN NaN NaN
2 1004 400 1005 405 1006 410
0 1007 500 NaN NaN NaN NaN
I've tried the GroupBy and pivot_table methods but without success. After the data is in the desired format, there are other calculations that need run against the newly organized data but getting it in the desired format is the key.