Following up my previous question: Sorting datetime objects by hour to a pandas dataframe then visualize to histogram
I need to plot 3 bars for one X-axis value representing viewer counts. Now they show those under one minute and above. I need one showing the overall viewers. I have the Dataframe but I can't seem to make them look right. With just 2 bars I have no problem, it looks just like I would want it with two bars:

The relevant part of the code for this:
# Time and date stamp variables
allviews = int(df['time'].dt.hour.count())
date = str(df['date'][0].date())
hours = df_hist_short.index.tolist()
hours[:] = [str(x) + ':00' for x in hours]
The hours variable that I use to represent the X-axis may be problematic, since I convert it to string so I can make the hours look like 23:00 instead of just the pandas index output 23 etc. I have seen examples where people add or subtract values from the X to change the bars position.
fig, ax = plt.subplots(figsize=(20, 5))
short_viewers = ax.bar(hours, df_hist_short['time'], width=-0.35, align='edge')
long_viewers = ax.bar(hours, df_hist_long['time'], width=0.35, align='edge')
Now I set the align='edge' and the two width values are absolutes and negatives. But I have no idea how to make it look right with 3 bars. I didn't find any positioning arguments for the bars. Also I have tried to work with the plt.hist() but I couldn't get the same output as with the plt.bar() function.
So as a result I wish to have a 3rd bar on the graph shown above on the left side, a bit wider than the other two.


hours). This seems like a weird hassle compared with something like Excel, until you try and create a bar chart with uneven spacing and unequal bar widths in Excel :/