I need to create two new Pandas columns using the logic and value from the previous row.
I have the following data:
Day Vol Price Income Outgoing
1 499 75
2 3233 90
3 1812 70
4 2407 97
5 3474 82
6 1057 53
7 2031 68
8 304 78
9 1339 62
10 2847 57
11 3767 93
12 1096 83
13 3899 88
14 4090 63
15 3249 52
16 1478 52
17 4926 75
18 1209 52
19 1982 90
20 4499 93
My challenge is to come up with a logic where both the Income and Outgoing columns (which are currently empty), should have the values of (Vol * Price).
But, the Income column should carry this value when, the previous day's "Price" value is lower than present. The Outgoing column should carry this value when, the previous day's "Price" value is higher than present. The rest of the Income and Outgoing columns, should just have NaN's. If the Price is unchanged, then that day's value is to be dropped.
But the entire logic should start with (n + 1) day. The first row should be skipped and the logic should apply from row 2 onwards.
I have tried using shift in my code example such as:
if sample_data['Price'].shift(1) < sample_data['Price'].shift(2)):
sample_data['Income'] = sample_data['Vol'] * sample_data['Price']
else:
sample_data['Outgoing'] = sample_data['Vol'] * sample_data['Price']
But it isn't working.
I feel there would be a simpler and comprehensive tactic to go about this, could someone please help ?
Update (The final output should look like this):
For day 16, the data is deleted because we have two similar prices for day 15 and 16.
