0

If I have an array of shape (500, 363, 3) which looks like the one below, how can I reduce it to shape (500, 363, 1) where each value will be a single bool equivalent to the result of all(). So [False, False, False] would become False?

Array([[[False, False, False],
    [False, False, False],
    [False, False, False],
    ...,
    [False, False, False],
    [False, False, False],
    [False, False, False]],

   [[False, False, False],
    [False, False, False],
    [False, False, False],
    ...,
    [False, False, False],
    [False, False, False],
    [False, False, False]],

   [[False, False, False],
    [False, False, False],
    [False, False, False],
    ...,
    [False, False, False],
    [False, False, False],
    [False, False, False]],

   ...,

   [[False, False, False],
    [False, False, False],
    [False, False, False],
    ...,
    [False, False, False],
    [False, False, False],
    [False, False, False]],

   [[False, False, False],
    [False, False, False],
    [False, False, False],
    ...,
    [False, False, False],
    [False, False, False],
    [False, False, False]],

   [[False, False, False],
    [False, False, False],
    [False, False, False],
    ...,
    [False, False, False],
    [False, False, False],
    [False, False, False]]])
1
  • 2
    arr.all(axis=2) should work Commented Jun 14, 2019 at 22:08

2 Answers 2

3

np.all has an axis argument, in this case you want to take all along the last axis, so you need:

a.all(-1)

a = np.random.choice([0,1], size=(500, 363, 3))
print(a.all(-1).shape)
# (500, 363)
Sign up to request clarification or add additional context in comments.

Comments

2

you may do

import numpy as np
reduced = np.all(arr, axis = 2)

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.