4

If I call model.cuda() in pytorch where model is a subclass of nn.Module, and say if I have four GPUs, how it will utilize the four GPUs and how do I know which GPUs that are using?

2 Answers 2

5

If you have a custom module derived from nn.Module after model.cuda() all model parameters, (model.parameters() iterator can show you these) will end on your cuda.

To check where are your parameters just print them (cuda:0) in my case:

class M(nn.Module):
    'custom module'
    def __init__(self):
        super().__init__()
        self.lin = nn.Linear(784, 10)

m = M()
m.cuda()
for _ in m.parameters():
    print(_)

# Parameter containing:
# tensor([[-0.0201,  0.0282, -0.0258,  ...,  0.0056,  0.0146,  0.0220],
#         [ 0.0098, -0.0264,  0.0283,  ...,  0.0286, -0.0052,  0.0007],
#         [-0.0036, -0.0045, -0.0227,  ..., -0.0048, -0.0003, -0.0330],
#         ...,
#         [ 0.0217, -0.0008,  0.0029,  ..., -0.0213,  0.0005,  0.0050],
#         [-0.0050,  0.0320,  0.0013,  ..., -0.0057, -0.0213,  0.0045],
#         [-0.0302,  0.0315,  0.0356,  ...,  0.0259,  0.0166, -0.0114]],
#        device='cuda:0', requires_grad=True)
# Parameter containing:
# tensor([-0.0027, -0.0353, -0.0349, -0.0236, -0.0230,  0.0176, -0.0156,  0.0037,
#          0.0222, -0.0332], device='cuda:0', requires_grad=True) 

You can also specify the device like this:

m.cuda('cuda:0')

With torch.cuda.device_count() you may check how many devices you have.

Sign up to request clarification or add additional context in comments.

Comments

2

To expand on prosti's answer to split your computations among multiple GPUs you should use torch.nn.DataParallel or DistributedDataParallel.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.