1

Have a dataframe: need to convert a timestamp column to datetime

 readable = datetime.utcfromtimestamp(1551348672).strftime('%d-%m-%Y 
 %H:%M:%S')
 print(readable) 28-02-2019 10:11:12

This is ok for one value but I need to have this result for a dataframe column named time_q

data_pre["time_q"] = data_pre["time_q"].map(lambda x: 
datetime.utcfromtimestamp(str(x)).strftime('%d-%m-%Y %H:%M:%S'))

Traceback (most recent call last)
     <ipython-input-65-7f8191ae6c70> in <module>
----> 1 data_pre["time_q"] = data_pre["time_q"].map(lambda x: 
     datetime.utcfromtimestamp(str(x)).strftime('%d-%m-%Y %H:%M:%S'))

~\Anaconda3\lib\site-packages\pandas\core\series.py in map(self, arg, 
na_action)
   2996         """
   2997         new_values = super(Series, self)._map_values(
-> 2998             arg, na_action=na_action)
  2999         return self._constructor(new_values,
  3000                                  
index=self.index).__finalize__(self)

~\Anaconda3\lib\site-packages\pandas\core\base.py in _map_values(self, 
mapper, na_action)
   1002 
   1003         # mapper is a function
-> 1004         new_values = map_f(values, mapper)
   1005 
      1006         return new_values

pandas/_libs/src\inference.pyx in pandas._libs.lib.map_infer()

<ipython-input-65-7f8191ae6c70> in <lambda>(x)
----> 1 data_pre["time_q"] = data_pre["time_q"].map(lambda x: 
datetime.utcfromtimestamp(str(x)).strftime('%d-%m-%Y %H:%M:%S'))

TypeError: an integer is required (got type str)

I expect all the values of the columm time_q to be for example 28-02-2019 10:11:12 and others values with this format; instead i have an error message

0

1 Answer 1

4

try this

# if the time_q is not int then convert first to int
data_pre['time_q'] = data_pre['time_q'].astype(int)
data_pre["time_q"] = data_pre["time_q"].apply(lambda x: datetime.utcfromtimestamp(x).strftime('%d-%m-%Y %H:%M:%S'))
Sign up to request clarification or add additional context in comments.

2 Comments

many thx to you the result is ok for me now
great @CobollecCobollec upvote or approve if you find it helpful

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.