I'm writing a script to normalise data from RT-PCR. I am reading the data from a tsv file and I'm struggling to put it into a pandas data frame so that it's usabale. The issue here is that the row index have the same name, is it possible to make it a hierarchal structure?
I'm using Python 3.6. I've tried .groupby() and .pivot() but I can't seem to get it to do what I want.
def calculate_peaks(file_path):
peaks_tsv = pd.read_csv(file_path, sep='\t', header=0, index_col=0)
My input file is this: input file image
My expected output:
EMB.brep1.peak EMB.brep1.length EMB.brep2.peak EMB.brep2.length EMB.brep3.peak EMB.brep3.length
primer name
Hv161 0 19276 218.41 20947 218.39 21803 218.26
1 22906 221.35 26317 221.17 26787 221.21
Hv223 0 4100 305.24 5247 305.37 4885 305.25
1 2593 435.25 3035 435.30 2819 435.32
2 4864 597.40 5286 597.20 4965 596.60
Actual Output:
EMB.brep1.peak EMB.brep1.length EMB.brep2.peak EMB.brep2.length EMB.brep3.peak EMB.brep3.length
primer name
Hv161 19276 218.41 20947 218.39 21803 218.26
Hv161 22906 221.35 26317 221.17 26787 221.21
Hv223 4100 305.24 5247 305.37 4885 305.25
Hv223 2593 435.25 3035 435.30 2819 435.32
Hv223 4864 597.40 5286 597.20 4965 596.60