So, this tree is NOT a Binary Search Tree. It is in no particular order, and is just in this order for quick access to specific indices (nth element), rather than whether an element exists or not.
The form of the Tree is like so:
data Tree a = Leaf a | Node Int (Tree a) (Tree a) deriving Show
For this specific tree, the "Int" from the Node constructor is the number of elements underneath that node (or number of leaves).
Using this structure, I copied parts of the Tree functions available in a lecture I found online (that I slightly modified when trying to understand):
buildTree :: [a] -> Tree a
buildTree = growLevel . map Leaf
where
growLevel [node] = node
growLevel l = growLevel $ inner l
inner [] = []
inner (e1:e2:rest) = e1 <> e2 : inner rest
inner xs = xs
join l@(Leaf _) r@(Leaf _) = Node 2 l r
join l@(Node ct _ _) r@(Leaf _) = Node (ct+1) l r
join l@(Leaf _) r@(Node ct _ _) = Node (ct+1) l r
join l@(Node ctl _ _) r@(Node ctr _ _) = Node (ctl+ctr) l r
And I was able to create some basic functions for moving through a tree. I made one that finds the nth element and returns it. I also made a Path datatype and implemented a function to return the path (in left and rights) to a specific index, and one function that can travel through a path and return that Node/Leaf.
Now, what I would like to make is a delete function. The problem here is with the fact that the tree is "leafy", or at least that is what is causing me difficulties.
If I end up with a Leaf at the deletion path, there is no "Null" or equivalent item to replace it with. Additionally, if I try to stop at the last path (like [L]), and check if that's a Node or not, then if it's a leaf replace the whole node with the opposite side etc., I run into the problem of changing the whole tree to reflect that change, not just return the end of the deletion, and change all the numbers from the tree to reflect the change in leaves.
I would like order to be preserved when deleting an item, like if you were to use a list as a simpler example:
del 4 [1, 2, 3, 4, 5, 6, 7] = [1, 2, 3, 4, 6, 7]
If there is a simpler way to structure the Tree (that still can contain duplicate elements and preserve order) what is it?
Is there some way to delete an element using this method?
join/(<>)as justl <> r = Node (count l + count r) l r, extractingcount :: Tree a -> Intas its own function? I think you'd also want to add a bang toNode:Node !Int (Tree a) (Tree a).count (Leaf _) = 1; count (Node n _ _) = n.countmakes the point of the tree more clear: aTreeis a normal binary tree, except thecountfunction is more efficient than normal.empty = Node 0 empty empty.