You have to wrap the element you do not want to be broadcasted over in a container. Here is a standard way to do it (I decreased length kwarg to 3 to make the example more clear):
julia> t = range(0,stop=2*pi,length=3)
0.0:3.141592653589793:6.283185307179586
julia> A = t .* Ref([1 ,0])
3-element Array{Array{Float64,1},1}:
[0.0, 0.0]
[3.141592653589793, 0.0]
[6.283185307179586, 0.0]
julia> Ref([1 2; 3 4]) .* A
3-element Array{Array{Float64,1},1}:
[0.0, 0.0]
[3.141592653589793, 9.42477796076938]
[6.283185307179586, 18.84955592153876]
Instead of Ref container you can also use a 1-element tuple or 1-element vector as wrappers:
julia> t .* ([1 ,0],)
3-element Array{Array{Float64,1},1}:
[0.0, 0.0]
[3.141592653589793, 0.0]
[6.283185307179586, 0.0]
julia> t .* [[1 ,0]]
3-element Array{Array{Float64,1},1}:
[0.0, 0.0]
[3.141592653589793, 0.0]
[6.283185307179586, 0.0]
The reason why Ref should be preferred is that it is 0-dimensional, so that it is the most neutral of these three methods (i.e. influences the output in the least way - retaining the broadcast style of the other argument). Here are some examples:
julia> f1(x) = x .* (2, )
f1 (generic function with 1 method)
julia> f2(x) = x .* [2]
f2 (generic function with 1 method)
julia> f3(x) = x .* Ref(2)
f3 (generic function with 1 method)
julia> f1(1)
(2,)
julia> f2(1)
1-element Array{Int64,1}:
2
julia> f3(1)
2
julia> f1((1,2))
(2, 4)
julia> f2((1,2))
2-element Array{Int64,1}:
2
4
julia> f3((1,2))
(2, 4)
[1, 0]is not a matrix, it's a vector, so you're attempting to multiply two vectors of different lengths with each other, and that won't work. If you want a matrix, write[1 0]without a comma. But then the output of the multiplication will just be a matrix, not an array of matrices.