I'm getting this error.
ValueError: Error when checking input: expected input_1 to have 3 dimensions, but got array with shape (860, 11)
These are the below codes that I'm using. The df has 860x15 dimension so datX has 860x11 dimension
# first neural network with keras tutorial
from numpy import loadtxt
from keras.models import Sequential
from keras.layers import Dense
import pandas as pd
from pandas import ExcelWriter
from pandas import ExcelFile
df =pd.read_excel('C:/Users/ASUS/Documents/Script/Simulation.Machine.V1/Final.xlsx', sheetname= "C0")
datX = df.drop(['C0', 'C1', 'C2', 'C3'], axis=1)
import numpy as np
datY = df['C1'] / df['C0']
datW = df['C0']**(1/2)
datZ = df['C1']
q=20
p= len(datX.columns)
from keras import backend as K
# define the keras model
model = Sequential()
model.add(Dense(q, input_dim=p, activation='tanh'))
model.add(Dense(1, activation= K.exp))
# define the keras model
offset = Sequential()
offset.add(Dense(1, input_dim=1, activation='linear'))
from keras.layers import Input
tweet_a = Input(shape=(860, 11))
tweet_b = Input(shape=(860, 1))
tweetx = model(tweet_a)
tweety = offset(tweet_b)
from keras.layers import Multiply, add
output = Multiply()([tweetx, tweety])
from keras.models import Model
modelnew = Model(inputs=[tweet_a, tweet_b], outputs=output)
modelnew.compile(optimizer='rmsprop',loss='mse',metrics=['accuracy'])
modelnew.fit([datX, datW], datY, epochs=100, batch_size=10000)
I expect the output would be a 1 dimension and have a 11 dimension input