If your current code is working correctly, there is no pressing need to change anything. However, there are some reasons you might want to code more defensively;
If the code will seem to work correctly when you pass in bogus values, it would be better if it raised an exception instead of return a bogus value. The responsibility to call it correctly lies squarely with the caller, but enforcing it can help make sure the code is correct.
if not isinstance(nested_lists,list):
raise ValueError('Need a list, got {0!r}'.format(nested_lists))
This has the drawback that it hardcodes list as the type for the first argument; properly reusable code should work with any type, as long as it has the required methods and behaviors to remain compatible with your implementation. Perhaps instead check for a behavior:
try:
something involving nested_lists[0][0]
except (IndexError, AttributeError):
raise ValueError('Expected nested list but got {0!r}'.format(nested_lists))
(The try is not strictly necessary here; but see below.)
If you get a traceback when you call the code incorrectly, but it is opaque or misleading, it is more helpful to catch and explicitly point out the error earlier. #or example, the snippet above (without the try wrapper) would produce
Traceback (most recent call last):
module __main__ line 141
traceback.print_exc()
module <module> line 1
test_func(1,1)
module <module> line 2
AttributeError: 'int' object has no attribute '__getitem__'
which is somewhat unobvious to debug.
If the code will be used by third parties, both of the above considerations will be more important from a support point of view, too.
Notice how the code raises an exception when called incorrectly. This is generally better than silently returning some garbage value, and the caller can similarly trap the error with a try/except if this is well-defined (i.e. documented!) behavior.
Finally, since Python 3.5, you have the option to use type annotations:
def test_func(nested_lists: list, val: int) -> int:
...
As noted in the documentation, the core language does not (yet?) enforce these type checks, but they can help static code analysis tools point out possible errors.
exception. So does Python. Now, howexceptionworks in Python. You should check that. It will help you to achieve your goal...dictandstrare completely compatible types to a function that simply wants to iterate over its argument.