A bit of background: I want to calculate the array factor of a MxN antenna array, which is given by the following equation:
Where w_i are the complex weight of the i-th element, (x_i,y_i,z_i) is the position of the i-th element, k is the wave number, theta and phi are the elevation and azimuth respectively, and i ranges from 0 to MxN-1.
In the code I have:
-theta and phi are np.mgrid with shape (200,200) each,
-w_i, and (x,y,z)_i are np.array with shape (NxM,) each
so AF is a np.array with shape (200,200) (sum over i).There is no problem so far, and I can get AF easily doing:
af = zeros([theta.shape[0],phi.shape[0]])
for i in range(self.size[0]*self.size[1]):
af = af + ( w[i]*e**(-1j*(k * x_pos[i]*sin(theta)*cos(phi) + k * y_pos[i]* sin(theta)*sin(phi)+ k * z_pos[i] * cos(theta))) )
Now, each w_i depends on frequency, so AF too, and now I have w_i with shape (NxM,1000) (I have 1000 samples of each w_i in frequency). I tried to use the above code changing
af = zeros([1000,theta.shape[0],phi.shape[0]])
but I get 'operands could not be broadcast together'. I can solve this by using a for loop through the 1000 values, but it is slow and is a bit ugly. So, what is the correct way to do the summation, or the correct way to properly define w_i and AF ?
Any help would be appreciated. Thanks.
edit The code with the new dimension I'm trying to add is the next:
from numpy import *
class AntennaArray:
def __init__(self,f,asize=None,tipo=None,dx=None,dy=None):
self.Lambda = 299792458 / f
self.k = 2*pi/self.Lambda
self.size = asize
self.type = tipo
self._AF_DATA_SIZE = 200
self.theta,self.phi = mgrid[0 : pi : self._AF_DATA_SIZE*1j,0 : 2*pi : self._AF_DATA_SIZE*1j]
self.element_pos = None
self.element_amp = None
self.element_pha = None
if dx == None:
self.dx = self.Lambda/2
else:
self.dx = dx
if dy == None:
self.dy = self.Lambda/2
else:
self.dy = dy
self.generate_array()
def generate_array(self):
M = self.size[0]
N = self.size[1]
dx = self.dx
dy = self.dy
x_pos = arange(0,dx*N,dx)
y_pos = arange(0,dy*M,dy)
z_pos = 0
ele = zeros([N*M,3])
for i in range(M):
ele[i*N:(i+1)*N,0] = x_pos[:]
for i in range(M):
ele[i*N:(i+1)*N,1] = y_pos[i]
self.element_pos = ele
#self.array_factor = self.calculate_array_factor()
def calculate_array_factor(self):
theta,phi = self.theta,self.phi
k = self.k
x_pos = self.element_pos[:,0]
y_pos = self.element_pos[:,1]
z_pos = self.element_pos[:,2]
w = self.element_amp*exp(1j*self.element_pha)
if len(self.element_pha.shape) > 1:
#I have f_size samples of w_i(f)
f_size = self.element_pha.shape[1]
af = zeros([f_size,theta.shape[0],phi.shape[0]])
else:
#I only have w_i
af = zeros([theta.shape[0],phi.shape[0]])
for i in range(self.size[0]*self.size[1]):
**strong text**#This for loop does the summation over i
af = af + ( w[i]*e**(-1j*(k * x_pos[i]*sin(theta)*cos(phi) + k * y_pos[i]* sin(theta)*sin(phi)+ k * z_pos[i] * cos(theta))) )
return af
I tried to test it with the next main
from numpy import *
f_points = 10
M = 2
N = 2
a = AntennaArray(5.8e9,[M,N])
a.element_amp = ones([M*N,f_points])
a.element_pha = zeros([M*N,f_points])
af = a.calculate_array_factor()
But I get
ValueError: 'operands could not be broadcast together with shapes (10,) (200,200) '
Note that if I set
a.element_amp = ones([M*N])
a.element_pha = zeros([M*N])
This works well.
Thanks.
forloop to implement the equation? You said you havenumpyarrays, you don't need the for loop. And on what? Seems you have flattened everything. This is totally not needed. What isself? Is that inside a method in a class? If you give us more background on your code, is better.foris for the summation only. The others arrays are only 1D because I am summing over them, and the final shape is the (200,200) of the numpy.mgrid. Thanks.