Here is my code in which I use the iris dataset to draw the decision tree I hope it can help you.
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier, export_graphviz
import graphviz
# Load the Iris dataset
iris = load_iris()
X = iris.data
y = iris.target
# Create a decision tree classifier
clf = DecisionTreeClassifier()
# Train the classifier
clf.fit(X, y)
# Visualize the decision tree
dot_data = export_graphviz(clf, out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("iris_decision_tree", format='png', cleanup=True)
# Display the decision tree
graph.view()