I have a pandas DataFrame of the form:
id start_time sequence_no value
0 71 2018-10-17 20:12:43+00:00 114428 3
1 71 2018-10-17 20:12:43+00:00 114429 3
2 71 2018-10-17 20:12:43+00:00 114431 79
3 71 2019-11-06 00:51:14+00:00 216009 100
4 71 2019-11-06 00:51:14+00:00 216011 150
5 71 2019-11-06 00:51:14+00:00 216013 180
6 92 2019-12-01 00:51:14+00:00 114430 19
7 92 2019-12-01 00:51:14+00:00 114433 79
8 92 2019-12-01 00:51:14+00:00 114434 100
What I'm trying to do is fill in the missing sequence_no per id/start_time combo. For example, the id/start_time pairing of 71 and 2018-10-17 20:12:43+00:00, is missing sequence_no 114430. For each added missing sequence_no, I also need average/interpolate the missing value column value. So, the final processing of the above data would end up looking like:
id start_time sequence_no value
0 71 2018-10-17 20:12:43+00:00 114428 3
1 71 2018-10-17 20:12:43+00:00 114429 3
2 71 2018-10-17 20:12:43+00:00 114430 41 **
3 71 2018-10-17 20:12:43+00:00 114431 79
4 71 2019-11-06 00:51:14+00:00 216009 100
5 71 2019-11-06 00:51:14+00:00 216010 125 **
6 71 2019-11-06 00:51:14+00:00 216011 150
7 71 2019-11-06 00:51:14+00:00 216012 165 **
8 71 2019-11-06 00:51:14+00:00 216013 180
9 92 2019-12-01 00:51:14+00:00 114430 19
10 92 2019-12-01 00:51:14+00:00 114431 39 **
11 92 2019-12-01 00:51:14+00:00 114432 59 **
12 92 2019-12-01 00:51:14+00:00 114433 79
13 92 2019-12-01 00:51:14+00:00 114434 100
(** added to the right of newly inserted rows for easier readability)
My original solution for doing this relied heavily on Python loops over a large table of data, so it seemed like the ideal place for numpy and pandas to shine. Leaning on SO answers like Pandas: create rows to fill numeric gaps, I came up with:
import pandas as pd
import numpy as np
# Generate dummy data
df = pd.DataFrame([
(71, '2018-10-17 20:12:43+00:00', 114428, 3),
(71, '2018-10-17 20:12:43+00:00', 114429, 3),
(71, '2018-10-17 20:12:43+00:00', 114431, 79),
(71, '2019-11-06 00:51:14+00:00', 216009, 100),
(71, '2019-11-06 00:51:14+00:00', 216011, 150),
(71, '2019-11-06 00:51:14+00:00', 216013, 180),
(92, '2019-12-01 00:51:14+00:00', 114430, 19),
(92, '2019-12-01 00:51:14+00:00', 114433, 79),
(92, '2019-12-01 00:51:14+00:00', 114434, 100),
], columns=['id', 'start_time', 'sequence_no', 'value'])
# create a new DataFrame with the min/max `sequence_no` values for each `id`/`start_time` pairing
by_start = df.groupby(['start_time', 'id'])
ranges = by_start.agg(
sequence_min=('sequence_no', np.min), sequence_max=('sequence_no', np.max)
)
reset = ranges.reset_index()
mins = reset['sequence_min']
maxes = reset['sequence_max']
# Use those min/max values to generate a sequence with ALL values in that range
expanded = pd.DataFrame(dict(
start_time=reset['start_time'].repeat(maxes - mins + 1),
id=reset['id'].repeat(maxes - mins + 1),
sequence_no=np.concatenate([np.arange(mins, maxes + 1) for mins, maxes in zip(mins, maxes)])
))
# Use the above generated DataFrame as an index to generate the missing rows, then interpolate
expanded_index = pd.MultiIndex.from_frame(expanded)
df.set_index(
['start_time', 'id', 'sequence_no']
).reindex(expanded_index).interpolate()
The output is correct, but it runs at almost exactly the same speed as my lots-of-python-loops solution. I'm sure there are places I could cut out a few steps, but the slowest part in my testing appears to be the reindex. Given that the real world data consists of almost a million rows (operated on frequently), are there any obvious ways to gain some performance advantage over what I've already written? Any ways I can speed up this transformation?
Update 9/12/2019
Combining the merge solution from this answer with the original construction of the expanded dataframe yields that fastest results so far, when tested on a sufficiently large dataset:
import pandas as pd
import numpy as np
# Generate dummy data
df = pd.DataFrame([
(71, '2018-10-17 20:12:43+00:00', 114428, 3),
(71, '2018-10-17 20:12:43+00:00', 114429, 3),
(71, '2018-10-17 20:12:43+00:00', 114431, 79),
(71, '2019-11-06 00:51:14+00:00', 216009, 100),
(71, '2019-11-06 00:51:14+00:00', 216011, 150),
(71, '2019-11-06 00:51:14+00:00', 216013, 180),
(92, '2019-12-01 00:51:14+00:00', 114430, 19),
(92, '2019-12-01 00:51:14+00:00', 114433, 79),
(92, '2019-12-01 00:51:14+00:00', 114434, 100),
], columns=['id', 'start_time', 'sequence_no', 'value'])
# create a ranges df with groupby and agg
ranges = df.groupby(['start_time', 'id'])['sequence_no'].agg([
('sequence_min', np.min), ('sequence_max', np.max)
])
reset = ranges.reset_index()
mins = reset['sequence_min']
maxes = reset['sequence_max']
# Use those min/max values to generate a sequence with ALL values in that range
expanded = pd.DataFrame(dict(
start_time=reset['start_time'].repeat(maxes - mins + 1),
id=reset['id'].repeat(maxes - mins + 1),
sequence_no=np.concatenate([np.arange(mins, maxes + 1) for mins, maxes in zip(mins, maxes)])
))
# merge expanded and df
merge = expanded.merge(df, on=['start_time', 'id', 'sequence_no'], how='left')
# interpolate and assign values
merge['value'] = merge['value'].interpolate()