I'm not sure if this question is more pertinent to CrossValidated or StackOverflow. I'm happy to migrate it if necessary.
I'm trying to reproduce the plots from Roger Koenker's quantile regression vignette but utilizing Frank Harrell's ordinal regression model.
Here are Koenker's plots on page 8 (I'm mostly interested in the plot of quantiles vs. predictor):

R Code
I can produce similar plots but not quite the same. For instance:
## Load libraries
library(dplyr)
library(rms)
library(ggplot2)
## Simulate data
set.seed(123)
n <- 100
df <- data.frame(x1 = rnorm(n),
x2 = sample(c(-1,0,1), n, TRUE)) %>%
mutate(y = x1 + rnorm(n))
d <- datadist(df)
options(datadist="d")
## Fit ORM model
f1 <- orm(y ~ x1 + x2, data = df)
## Estimate quantiles
qu <- Quantile(f1)
q25 <- function(x) qu(0.25, x)
q50 <- function(x) qu(0.50, x)
q75 <- function(x) qu(0.75, x)
## Point predictions
qplot <- Predict(f1, fun =q25) %>% mutate(q = 25) %>%
bind_rows(Predict(f1, fun = q50) %>% mutate(q = 50)) %>%
bind_rows(Predict(f1, fun = p75) %>% mutate(q = 75))
qplot %>%
mutate(q = as.factor(q)) %>%
ggplot(aes(x = x1, y = yhat, group = q, color = q)) +
geom_line()
I believe SAS produces a similar plot in proc quantreg.