First of all, you cannot get the address of t if you don't pass any reference to it. This is like trying to follow a pointer back to it's pointer. Pointers in general don't work in the reverse, and this is the reason to write data structures like double linked lists, or similar. Simply you can have millions of such pointers, all pointing to this function, so there's nothing in the function address that allow you to know where the function pointer was stored.
Once said that:
In your first paragraph you say:
How can I retrieve the function pointer that was used to call a function, from within the function itself?
Well, that's preciselly what you get when you use the plain name of the function (as in main) you can then execute that function using a (probably non empty) argument list, as you do in (). You don't know where your function has been called from, but what is true, is that if your program control is inside the body of it, it must have been called from the beginning, so using the function name inside the function could be a way to get a function's pointer. But you cannot get it further and get the structure where that pointer was used... this information is not passed in to your function, you have no means to get to it. This is the same problem as when you are forced to pass an array length to a function because there's nothing in the array that allows you to get how large it is.
I have not checked thoroughly your code, as it is just a snippet of code, that needs some adjustments to evolve into fully executable code, but from my point of view it is correct and will do what you are thinking on. Just test, the computer is not going to break if you make a mistake.
Beware in your code you have passed a full struct record by value, and that will make a full copy of the struct in order to put it in the parameter stack. Probably what you want is something like:
struct vtable {
void (*func)(void); /* correct */
};
void foobar(void) {
// How can I get the address of t.func from here?
/* if you want to get the address of the function, it is
* easy, every function knows its address, is in its
* name */
void (*f)(void) = foobar; /* this pointer is the only one
* that could be used to call
* this function and be now
* executing code here. :) */
/* ... */
f(); /* this will call foobar again, but through the pointer
* f, recursively (the pointer although, is the same) */
}
int main(void)
{
struct vtable t = { foobar };
t.func();
return 0;
}
It is very common to see functions that use callbacks to be executed on behalf of the calling code. Those functions is common also to require pointers to strcutres that represent the context they are called in behalf of. So don't hesitate to pass arguments to your function (try not to pass large structures by value, as you do in your example ---well, I recognize it is not large, it has only a pointer) but anyway, that is very common. OOP implementation rests deeply on these premises.
struct vtable tas a parameter wouldn't help anyway because the copy oft.funcwould not have the same address ast.funcitself. You would need to pass a pointer totor a pointer tot.func.t.funcpointer that was created when I instantiated a newstruct vtable.