I asked the question a while back for python, but now I need to do the same thing in PySpark.
I have a dataframe (df) like so:
|cust_id|address |store_id|email |sales_channel|category|
-------------------------------------------------------------------
|1234567|123 Main St|10SjtT |[email protected]|ecom |direct |
|4567345|345 Main St|10SjtT |[email protected]|instore |direct |
|1569457|876 Main St|51FstT |[email protected]|ecom |direct |
and I would like to combine the last 4 fields into one metadata field that is a json like so:
|cust_id|address |metadata |
-------------------------------------------------------------------------------------------------------------------
|1234567|123 Main St|{'store_id':'10SjtT', 'email':'[email protected]','sales_channel':'ecom', 'category':'direct'} |
|4567345|345 Main St|{'store_id':'10SjtT', 'email':'[email protected]','sales_channel':'instore', 'category':'direct'}|
|1569457|876 Main St|{'store_id':'51FstT', 'email':'[email protected]','sales_channel':'ecom', 'category':'direct'} |
Here's the code I used to do this in python:
cols = [
'store_id',
'store_category',
'sales_channel',
'email'
]
df1 = df.copy()
df1['metadata'] = df1[cols].to_dict(orient='records')
df1 = df1.drop(columns=cols)
but I would like to translate this to PySpark code to work with a spark dataframe; I do NOT want to use pandas in Spark.