2

I need to append boundaries to my matrix, it's just a repetition of first column and row on the beginning and last column and row at the end of matrix.

I have this PoC:

matrix = np.arange(20).reshape(4,5)

[[ 0  1  2  3  4]                                                                                                                             
 [ 5  6  7  8  9]                                                                                                                             
 [10 11 12 13 14]                                                                                                                             
 [15 16 17 18 19]]

And when I insert rows at the top and bottom like this, it works fine.

shape = matrix.shape (4,5)
matrix_t = np.insert(matrix, [0, shape[0]], [matrix[0], matrix[shape[0]-1]], axis=0)

[[ 0  1  2  3  4]                                                                                                                             
 [ 0  1  2  3  4]                                                                                                                             
 [ 5  6  7  8  9]                                                                                                                             
 [10 11 12 13 14]                                                                                                                             
 [15 16 17 18 19]                                                                                                                             
 [15 16 17 18 19]]

As you can see it has added 0 1 2 3 4 as first row and 15 16 17 18 19 as last.

Now I wanted to do same thing just to append columns on the left and on the right. Simplifying above code a bit, I did it like this (needed to reshape to create column vector).

temp1 = np.arange(4).reshape(4,1)
temp2 = np.arange(4, 8, 1).reshape(4,1)
matrix_t = np.insert(matrix, [0, 5], [temp1, temp2], axis=1)

And then i got this error:

Traceback (most recent call last):                                                                                                            
  File "main.py", line 33, in <module>                                                                                                        
    matrix_t = np.insert(matrix, [0, 5], [temp1, temp2], axis=1)                                                                              
  File "/usr/lib/python3/dist-packages/numpy/lib/function_base.py", line 3496, in insert                                                      
    new[slobj] = values                                                                                                                       
ValueError: total size of new array must be unchanged

When i do it like this, it works perfectly fine:

matrix_t = np.insert(matrix, [0, 5], temp1, axis=1)

[[ 0  0  1  2  3  4  0]                                                                                                                       
 [ 1  5  6  7  8  9  1]                                                                                                                       
 [ 2 10 11 12 13 14  2]                                                                                                                       
 [ 3 15 16 17 18 19  3]]

What am I missing?

1 Answer 1

1

The insert docs:

values : array_like
    Values to insert into `arr`. If the type of `values` is different
    from that of `arr`, `values` is converted to the type of `arr`.
    `values` should be shaped so that ``arr[...,obj,...] = values``
    is legal.

your start array:

In [40]: arr = np.arange(20).reshape(4,5)  

adding new rows:

In [42]: np.insert(arr, [0, 4], [arr[0], arr[-1]], axis=0)                                     
Out[42]: 
array([[ 0,  1,  2,  3,  4],
       [ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19],
       [15, 16, 17, 18, 19]])

That values specification means that these two match:

In [48]: np.array([arr[0], arr[-1]])                                                           
Out[48]: 
array([[ 0,  1,  2,  3,  4],
       [15, 16, 17, 18, 19]])
In [49]: Out[42][[0,4],:]                                                                      
Out[49]: 
array([[ 0,  1,  2,  3,  4],
       [15, 16, 17, 18, 19]])

values isn't a list; it's array_like, meaning that insert will create an array from that input.

When we try to add new columns:

In [50]: temp1 = np.arange(4).reshape(4,1) 
    ...: temp2 = np.arange(4, 8, 1).reshape(4,1) 
    ...: np.insert(arr, [0, 5], [temp1, temp2], axis=1)                                        
---------------------------------------------------------------------------
...
ValueError: shape mismatch: value array of shape (2,4,1) could not be broadcast to indexing result of shape (2,4)

A different message, but same problem. Look at the array version of your values list:

In [51]: np.array([temp1, temp2])                                                              
Out[51]: 
array([[[0],
        [1],
        [2],
        [3]],

       [[4],
        [5],
        [6],
        [7]]])

That's the (2,4,1) array. It's trying to put that into a (2,4) slot:

In [52]: np.ones((4,7),int)[:,[0,5]]                                                           
Out[52]: 
array([[1, 1],
       [1, 1],
       [1, 1],
       [1, 1]])

If we join the temp on axis 1, to make a (2,4) array, the insert works:

In [53]: np.concatenate([temp1,temp2], axis=1)                                                 
Out[53]: 
array([[0, 4],
       [1, 5],
       [2, 6],
       [3, 7]])

In [54]: np.insert(arr, [0, 5], Out[53], axis=1)                                               
Out[54]: 
array([[ 0,  0,  1,  2,  3,  4,  4],
       [ 1,  5,  6,  7,  8,  9,  5],
       [ 2, 10, 11, 12, 13, 14,  6],
       [ 3, 15, 16, 17, 18, 19,  7]])

np.insert is general purpose, trying to handle lots of cases, and as such understanding the inputs can be tricky.

===

Your first insert could just as easily be done with indexing or concatenate (vstack for simpler notation):

In [56]: arr[[0]+[0,1,2,3]+[3]]                                                                
Out[56]: 
array([[ 0,  1,  2,  3,  4],
       [ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19],
       [15, 16, 17, 18, 19]])
In [57]: np.vstack([arr[0],arr,arr[-1]])                                                       
Out[57]: 
array([[ 0,  1,  2,  3,  4],
       [ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19],
       [15, 16, 17, 18, 19]])

np.concatenate([arr[[0]],arr,arr[[-1]]]) is the same, where arr[[0]] is (1,5) shaped.

And the column insert with a column concatenate (temp1 already has the (4,1) shape):

In [58]: np.concatenate([temp1, arr, temp2], axis=1)                                           
Out[58]: 
array([[ 0,  0,  1,  2,  3,  4,  4],
       [ 1,  5,  6,  7,  8,  9,  5],
       [ 2, 10, 11, 12, 13, 14,  6],
       [ 3, 15, 16, 17, 18, 19,  7]])
Sign up to request clarification or add additional context in comments.

1 Comment

Wow, I guess you know python pretty well :) Thank you for your explanation, I understand it now. I'm quite new in python world. Maybe if my error message was that specific i would figured it out. Btw. this syntax with -1 index is pretty cool, I forgot about that.

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.