Hi I am looking to convert the dataframe by grouping the columns separately and adding as new columns to existing dataframe.
ID qty year day week
1 2 2016 5 9
2 4 2016 5 9
3 0 2016 5 9
4 4 2016 5 9
5 0 2016 5 9
6 2 2016 5 9
1 0 2016 6 9
2 2 2016 6 9
3 0 2016 6 9
4 0 2016 6 9
5 0 2016 6 9
6 0 2016 6 9
1 0 2016 0 10
2 2 2016 0 10
3 2 2016 0 10
4 2 2016 0 10
5 6 2016 0 10
6 0 2016 0 10
1 0 2016 1 10
2 0 2016 1 10
3 2 2016 1 10
4 0 2016 1 10
5 0 2016 1 10
6 0 2016 1 10
1 0 2016 2 10
2 6 2016 2 10
3 0 2016 2 10
4 4 2016 2 10
5 0 2016 2 10
6 2 2016 2 10
1 0 2016 3 10
2 0 2016 3 10
3 0 2016 3 10
4 4 2016 3 10
5 0 2016 3 10
6 0 2016 3 10
1 0 2016 4 10
2 0 2016 4 10
3 2 2016 4 10
4 4 2016 4 10
5 0 2016 4 10
6 2 2016 4 10
1 4 2016 5 10
2 0 2016 5 10
3 0 2016 5 10
4 8 2016 5 10
5 0 2016 5 10
6 0 2016 5 10
1 0 2016 6 10
2 0 2016 6 10
3 0 2016 6 10
4 6 2016 6 10
5 2 2016 6 10
6 6 2016 6 10
1 0 2020 0 8
2 2 2020 0 8
3 0 2020 0 8
4 0 2020 0 8
5 0 2020 0 8
6 2 2020 0 8
1 0 2020 1 8
2 0 2020 1 8
3 0 2020 1 8
4 0 2020 1 8
5 0 2020 1 8
6 0 2020 1 8
1 0 2020 2 8
2 0 2020 2 8
3 0 2020 2 8
4 0 2020 2 8
5 0 2020 2 8
6 0 2020 2 8
1 0 2020 3 8
2 0 2020 3 8
3 0 2020 3 8
4 0 2020 3 8
5 0 2020 3 8
6 0 2020 3 8
1 0 2020 4 8
2 0 2020 4 8
3 2 2020 4 8
4 0 2020 4 8
5 0 2020 4 8
6 0 2020 4 8
5 2 2020 5 8
6 4 2020 5 8
3 4 2020 6 8
3 4 2020 0 9
I am trying to convert it something like this
ID qty year day week total_Sales_year total_sales_by_day total_sales_week
1 2 2016 5 9 78 12 14
2 4 2016 5 9 78 12 14
3 0 2016 5 9 78 12 14
4 4 2016 5 9 78 12 14
5 0 2016 5 9 78 12 14
6 2 2016 5 9 78 12 14
1 0 2016 6 9 78 2 14
2 2 2016 6 9 78 2 14
3 0 2016 6 9 78 2 14
4 0 2016 6 9 78 2 14
5 0 2016 6 9 78 2 14
6 0 2016 6 9 78 2 14
1 0 2016 0 10 78 2 64
2 2 2016 0 10 78 12 64
3 2 2016 0 10 78 12 64
4 2 2016 0 10 78 12 64
5 6 2016 0 10 78 12 64
6 0 2016 0 10 78 12 64
1 0 2016 1 10 78 2 64
2 0 2016 1 10 78 2 64
3 2 2016 1 10 78 2 64
4 0 2016 1 10 78 2 64
5 0 2016 1 10 78 2 64
6 0 2016 1 10 78 2 64
1 0 2016 2 10 78 12 64
2 6 2016 2 10 78 12 64
3 0 2016 2 10 78 12 64
4 4 2016 2 10 78 12 64
5 0 2016 2 10 78 12 64
6 2 2016 2 10 78 12 64
1 0 2016 3 10 78 4 64
2 0 2016 3 10 78 4 64
3 0 2016 3 10 78 4 64
4 4 2016 3 10 78 4 64
5 0 2016 3 10 78 4 64
6 0 2016 3 10 78 4 64
1 0 2016 4 10 78 8 64
2 0 2016 4 10 78 8 64
3 2 2016 4 10 78 8 64
4 4 2016 4 10 78 8 64
5 0 2016 4 10 78 8 64
6 2 2016 4 10 78 8 64
1 4 2016 5 10 78 12 64
2 0 2016 5 10 78 12 64
3 0 2016 5 10 78 12 64
4 8 2016 5 10 78 12 64
5 0 2016 5 10 78 12 64
6 0 2016 5 10 78 12 64
1 0 2016 6 10 78 14 64
2 0 2016 6 10 78 14 64
3 0 2016 6 10 78 14 64
4 6 2016 6 10 78 14 64
5 2 2016 6 10 78 14 64
6 6 2016 6 10 78 14 64
1 0 2020 0 8 20 4 20
2 2 2020 0 8 20 4 20
3 0 2020 0 8 20 4 20
4 0 2020 0 8 20 4 20
5 0 2020 0 8 20 4 20
6 2 2020 0 8 20 4 20
1 0 2020 1 8 20 0 20
2 0 2020 1 8 20 0 20
3 0 2020 1 8 20 0 20
4 0 2020 1 8 20 0 20
5 0 2020 1 8 20 0 20
6 0 2020 1 8 20 0 20
1 0 2020 2 8 20 0 20
2 0 2020 2 8 20 0 20
3 0 2020 2 8 20 0 20
4 0 2020 2 8 20 0 20
5 0 2020 2 8 20 0 20
6 0 2020 2 8 20 0 20
1 0 2020 3 8 20 0 20
2 0 2020 3 8 20 0 20
3 0 2020 3 8 20 0 20
4 0 2020 3 8 20 0 20
5 0 2020 3 8 20 0 20
6 0 2020 3 8 20 0 20
1 0 2020 4 8 20 2 20
2 0 2020 4 8 20 2 20
3 2 2020 4 8 20 2 20
4 0 2020 4 8 20 2 20
5 0 2020 4 8 20 2 20
6 0 2020 4 8 20 2 20
5 2 2020 5 8 20 6 20
6 4 2020 5 8 20 6 20
3 4 2020 6 8 20 4 20
3 4 2020 0 9 20 4 20
I tried doing something like this but this will not get expected dataframe.
df.groupBy("year").agg("qty")
but this will only give one column and won't be able to tie it back to ID Column.