1

I am looking to create a plot depicting the total number of observations and the number of observations with the variable Rating = Rated within each segment small, medium, and large. My expected output would be three graphs with one line depicting the total number of observations and one line depicting the number of observations with the variable Rated

My current code looks like this:

df <- CombData %>%
  group_by(Date, MarketSeg) %>%
  summarise(Total = n())

ggplot(data = CombData1, aes(x=Date, y=Ratings, group=MarketSeg, color=MarketSeg)) + 
  geom_line() + facet_wrap(~MarketSeg)

Thanks in advance.

Data:

structure(list(Date = structure(c(17044, 17044, 17044, 17044, 
17044, 17044, 17044, 17044, 17044, 17044, 17044, 17044, 17044, 
17044, 17044, 17044, 17044, 17044, 17044, 17044, 17044, 17044, 
17044, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 17074, 
17074, 17074, 17074, 17074, 17074, 17074, 17074, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 17105, 
17105, 17105, 17105, 17105, 17135, 17135, 17135, 17135, 17135, 
17135, 17135, 17135, 17135, 17135, 17135, 17135, 17135, 17135, 
17135, 17135, 17135, 17135, 17135, 17135, 17135, 17135, 17135, 
17135, 17135, 17135, 17135, 17135, 17135, 17135, 17135, 17135, 
17135, 17135), class = "Date"), MarketCap = c(17793490000, 37606234252.4, 
2.1108e+10, 1309638615, 1.113e+10, 3397350000, 2652530240, 37091806405, 
1359499200, 6809300000, 76266899.28, 13774786240, 1545680000, 
63594722.73, 51341862.01, 50107136.47, 1.29e+09, 46223250, 128974374.6, 
3577976769.416, 3706781337, 11026283863.73, 5842461152.7, 4362690525, 
821145923.5, 238287420, 227040000, 131262000, 73756593.4, 77758200, 
73271825.2, 89201950, 24055716, 7815943725, 75117974128, 35904920250, 
1040640000, 17203972.5, 243725033, 275137500, 797503125, 2959027243, 
12806008832, 87684100, 1081800000, 251619858, 12771500000, 745577600, 
901299772.75, 97787904480, 1037369208, 269790000, 96921756.9, 
82668000, 363480200, 11028750000, 313985864.5, 2174677900, 765596013, 
72429837.39, 1065910694, 1324654600.8, 120852648578.5, 288792000, 
264450000, 165827845.298, 68080914610, 22072758675.4, 190250062289, 
2650279142.5, 93334060, 42901711525.4, 10427653484.6, 385600000, 
1381724307.15, 290812500, 29367359691, 14549176078.6, 248830003.2, 
793066396.5, 58800000, 14086361.16, 8761750000, 7733515000, 262440000, 
739680000, 8636728800, 1.28e+09, 8033914752, 42317532.63, 9663376.8, 
89517150, 2008211179.58, 1422750374.5, 233263043.52, 616047756.6, 
216763086, 483999180, 77497804.8, 18828151.2, 328728735, 6.27e+10, 
117600000, 3996340000, 371634938.745, 1.332e+09, 321133312.5, 
67716000, 115604797000, 71070174, 334599975, 1077300000, 170400000, 
67878383.2, 572400000, 352716000, 51949883424, 93762513621, 2421822652, 
313731880, 74698740600, 1.01772e+11, 17622500000, 360985600, 
15977500000, 4872145008, 507927000, 224770774, 554260125600, 
51077328972.6, 38632433, 5137500000, 17690700000, 37577980132, 
2.01e+10, 1322669845, 1.13e+10, 3386700000, 2521047060, 36000870922.5, 
1282459200, 6535100000, 72800222.04, 14776392320, 1432862000, 
58929472.8, 47415719.621, 43476908, 1.27e+09, 41416032, 104091858.6, 
3534532125.208, 3769080183, 11393974326.04, 5644411622.1, 4462246625, 
814971894, 239169966, 254100000, 133620000, 72896458.2, 74767500, 
81688183.5, 94192500, 15034822.5, 7716165720, 72621965494, 42379578000, 
1010830000, 13233825, 249669546, 276375000, 799912500, 3239810850, 
12182897664, 94959200, 1083600000, 292003292, 12617750000, 755452800, 
927965446.5, 104629033600, 977750288, 263160000, 65804771.79, 
75696000, 361630000, 10977750000, 311226762, 2350055150, 878472348.25, 
64650336.337, 1108358465, 1278175492, 120409559124.5, 270742500, 
269062500, 167940301.926, 67357931446, 21267861444.6, 205792725082, 
2615176107.5, 93536520, 43178369269, 12247597602.8, 424160000, 
1404375525.3, 290812500, 29224799692.5, 15307698168.1, 220318232, 
733721292, 51300000, 9328716, 8848500000, 7114833800, 270540000, 
753080000, 8434161600, 1.11e+09, 8536034424, 47942014.815, 10974835.08, 
84062700, 2076286134.82, 1465733769.5, 216692444.8, 629969739.8, 
218176758.3, 482694600, 82056499.2, 17833167.6, 298047386.4, 
6.2396e+10, 128800000, 4070190000, 369604146.73, 1.314e+09, 328084250, 
65407500, 112956396196, 63568322.3, 326381730, 1065960000, 1.92e+08, 
72918857.2, 587250000, 392616000, 53505742876.8, 103244116122, 
2449851782, 403369560, 64499735880, 93614400000, 17337500000, 
355699200, 15541750000, 5166831198, 515508000, 237105755.5, 487845513600, 
49462015406.4, 36267182, 5037500000, 17149700000, 37408455409.6, 
1.965e+10, 1316154230, 1.173e+10, 3.408e+09, 2449588810, 33579526315, 
1335360000, 6553380000, 69600212.28, 14568858720, 1423750000, 
59175012.27, 46207675.809, 45650753.4, 1.3e+09, 49181538, 111635430.34, 
3413507759.2, 3613333068, 10906673713.34, 5050263030.3, 4419579725, 
703839363, 241229240, 251790000, 137812000, 73111492, 75764400, 
83173423.2, 92506950, 16237608.3, 7815943725, 70957959738, 39358071050, 
1151750000, 9175452, 259554030.12, 282975000, 798707812.5, 3175014633, 
12161411072, 87301200, 1083600000, 333939935, 14749750000, 720889600, 
767971404, 93663106040, 977750288, 265200000, 153274185.36, 74700000, 
370040000, 1.1934e+10, 231764610), MarketSeg = c("Large", "Large", 
"Large", "Medium", "Large", "Medium", "Medium", "Large", "Medium", 
"Medium", "Small", "Large", "Medium", "Small", "Small", "Small", 
"Medium", "Small", "Small", "Medium", "Medium", "Large", "Medium", 
"Medium", "Small", "Small", "Small", "Small", "Small", "Small", 
"Small", "Small", "Small", "Large", "Large", "Large", "Small", 
"Small", "Small", "Small", "Small", "Medium", "Large", "Small", 
"Small", "Small", "Large", "Small", "Small", "Large", "Small", 
"Small", "Small", "Small", "Small", "Large", "Small", "Medium", 
"Small", "Small", "Small", "Medium", "Large", "Small", "Small", 
"Small", "Large", "Large", "Large", "Medium", "Small", "Large", 
"Large", "Small", "Medium", "Small", "Large", "Large", "Small", 
"Small", "Small", "Small", "Large", "Large", "Small", "Small", 
"Large", "Medium", "Large", "Small", "Small", "Small", "Medium", 
"Medium", "Small", "Small", "Small", "Small", "Small", "Small", 
"Small", "Large", "Small", "Medium", "Small", "Medium", "Small", 
"Small", "Large", "Small", "Small", "Small", "Small", "Small", 
"Small", "Small", "Large", "Large", "Medium", "Small", "Large", 
"Large", "Large", "Small", "Large", "Medium", "Small", "Small", 
"Large", "Large", "Small", "Medium", "Large", "Large", "Large", 
"Medium", "Large", "Medium", "Medium", "Large", "Medium", "Medium", 
"Small", "Large", "Medium", "Small", "Small", "Small", "Medium", 
"Small", "Small", "Medium", "Medium", "Large", "Medium", "Medium", 
"Small", "Small", "Small", "Small", "Small", "Small", "Small", 
"Small", "Small", "Large", "Large", "Large", "Small", "Small", 
"Small", "Small", "Small", "Medium", "Large", "Small", "Small", 
"Small", "Large", "Small", "Small", "Large", "Small", "Small", 
"Small", "Small", "Small", "Large", "Small", "Medium", "Small", 
"Small", "Small", "Medium", "Large", "Small", "Small", "Small", 
"Large", "Large", "Large", "Medium", "Small", "Large", "Large", 
"Small", "Medium", "Small", "Large", "Large", "Small", "Small", 
"Small", "Small", "Large", "Medium", "Small", "Small", "Large", 
"Small", "Large", "Small", "Small", "Small", "Medium", "Medium", 
"Small", "Small", "Small", "Small", "Small", "Small", "Small", 
"Large", "Small", "Medium", "Small", "Medium", "Small", "Small", 
"Large", "Small", "Small", "Small", "Small", "Small", "Small", 
"Small", "Large", "Large", "Medium", "Small", "Large", "Large", 
"Large", "Small", "Large", "Medium", "Small", "Small", "Large", 
"Large", "Small", "Medium", "Large", "Large", "Large", "Medium", 
"Large", "Medium", "Medium", "Large", "Medium", "Medium", "Small", 
"Large", "Medium", "Small", "Small", "Small", "Medium", "Small", 
"Small", "Medium", "Medium", "Large", "Medium", "Medium", "Small", 
"Small", "Small", "Small", "Small", "Small", "Small", "Small", 
"Small", "Large", "Large", "Large", "Medium", "Small", "Small", 
"Small", "Small", "Medium", "Large", "Small", "Small", "Small", 
"Large", "Small", "Small", "Large", "Small", "Small", "Small", 
"Small", "Small", "Large", "Small"), ESG = c("Not Rated", "Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Rated", "Not Rated", "Not Rated", "Not Rated", "Rated", "Not Rated", 
"Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Rated", "Rated", "Not Rated", 
"Not Rated", "Rated", "Rated", "Not Rated", "Not Rated", "Rated", 
"Not Rated", "Not Rated", "Not Rated", "Rated", "Rated", "Not Rated", 
"Not Rated", "Not Rated", "Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Rated", "Not Rated", 
"Not Rated", "Not Rated", "Rated", "Not Rated", "Rated", "Not Rated", 
"Not Rated", "Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Rated", "Rated", "Not Rated", "Not Rated", "Rated", 
"Rated", "Not Rated", "Not Rated", "Rated", "Not Rated", "Not Rated", 
"Not Rated", "Rated", "Rated", "Not Rated", "Not Rated", "Not Rated", 
"Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Rated", "Not Rated", 
"Not Rated", "Not Rated", "Not Rated", "Not Rated", "Not Rated", 
"Not Rated")), class = c("grouped_df", "tbl_df", "tbl", "data.frame"
), row.names = c(NA, -321L), groups = structure(list(Date = structure(c(17044, 
17044, 17074, 17074, 17105, 17105, 17135, 17135), class = "Date"), 
    ESG = c("Not Rated", "Rated", "Not Rated", "Rated", "Not Rated", 
    "Rated", "Not Rated", "Rated"), .rows = list(c(1L, 3L, 4L, 
    5L, 6L, 7L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 
    19L, 21L, 22L, 23L), c(2L, 8L, 20L), c(24L, 25L, 26L, 27L, 
    28L, 29L, 30L, 31L, 32L, 33L, 34L, 36L, 37L, 38L, 39L, 40L, 
    41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 51L, 52L, 53L, 
    54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 64L, 65L, 66L, 
    68L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 78L, 79L, 80L, 81L, 
    82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L, 93L, 
    94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 103L, 104L, 105L, 
    106L, 107L, 108L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 
    119L, 120L, 123L, 124L, 126L, 127L, 128L, 131L, 132L, 133L, 
    135L, 136L, 137L, 138L, 139L, 141L, 142L, 143L, 144L, 145L, 
    146L, 147L, 148L, 149L, 150L, 151L, 153L, 154L, 155L), c(35L, 
    50L, 63L, 67L, 69L, 77L, 102L, 109L, 117L, 118L, 121L, 122L, 
    125L, 129L, 130L, 134L, 140L, 152L), c(156L, 157L, 158L, 
    159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L, 168L, 169L, 
    170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L, 179L, 
    180L, 181L, 183L, 184L, 185L, 186L, 187L, 188L, 189L, 190L, 
    191L, 192L, 193L, 194L, 196L, 197L, 198L, 200L, 202L, 203L, 
    205L, 206L, 207L, 208L, 210L, 211L, 212L, 213L, 214L, 215L, 
    216L, 217L, 218L, 219L, 220L, 221L, 222L, 223L, 224L, 225L, 
    226L, 227L, 228L, 229L, 230L, 231L, 232L, 233L, 235L, 236L, 
    237L, 238L, 239L, 240L, 242L, 243L, 244L, 245L, 246L, 247L, 
    248L, 251L, 252L, 255L, 256L, 258L, 259L, 260L, 263L, 264L, 
    265L, 267L, 268L, 269L, 270L, 271L, 273L, 274L, 275L, 276L, 
    277L, 278L, 279L, 280L, 281L, 282L, 283L, 285L, 286L, 287L
    ), c(167L, 182L, 195L, 199L, 201L, 204L, 209L, 234L, 241L, 
    249L, 250L, 253L, 254L, 257L, 261L, 262L, 266L, 272L, 284L
    ), c(288L, 289L, 290L, 291L, 292L, 293L, 294L, 295L, 296L, 
    297L, 298L, 300L, 301L, 302L, 303L, 304L, 305L, 306L, 307L, 
    308L, 309L, 310L, 311L, 312L, 313L, 315L, 316L, 317L, 318L, 
    319L, 320L, 321L), c(299L, 314L))), row.names = c(NA, -8L
), class = c("tbl_df", "tbl", "data.frame"), .drop = TRUE))

2 Answers 2

2

Or:

library(ggplot2) 
library(dplyr)

df <- df %>%
  group_by(Date, MarketSeg, ESG) %>%
  summarise(Total = n()) 

df %>%
  ggplot(aes(x=Date, y=Total, group=MarketSeg, color=MarketSeg, size = 'Rated')) + 
  geom_line(data = ~.x %>% summarise(Total=sum(Total)), aes(size='Total')) + 
  geom_line(data = ~.x %>% filter(ESG=='Rated')) +
  facet_wrap(~MarketSeg) +
  scale_size_manual(values = c(.5, 2))

Created on 2020-04-14 by the reprex package (v0.3.0)

Sign up to request clarification or add additional context in comments.

Comments

1

Try this.

library(ggplot2)
library(dplyr)

# Total number of obs
df <- CombData %>%
  group_by(Date, MarketSeg) %>%
  summarise(Total = n())

# Number of rated obs
df1 <- CombData %>%
  group_by(Date, MarketSeg, ESG) %>%
  summarise(Total = n()) %>% 
  filter(ESG == "Rated")

ggplot() +
  geom_line(data = df, mapping = aes(x = Date, y = Total, group = MarketSeg, color = MarketSeg)) +
  geom_line(data = df1, mapping = aes(x = Date, y = Total, group = MarketSeg, lty = ESG), color = "red", size = 1) +
  facet_wrap(~MarketSeg)

Created on 2020-04-14 by the reprex package (v0.3.0)

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.