0

I trained a model to classify images from 9 classes and saved it using model.save(). Here is the code I used:

from keras.applications.resnet50 import ResNet50, preprocess_input
from keras.layers import Dense, Dropout
from keras.models import Model
from keras.optimizers import Adam, SGD
from keras.preprocessing.image import ImageDataGenerator, image
from keras.callbacks import EarlyStopping, ModelCheckpoint
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
from keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGE = True

# Define some constant needed throughout the script
N_CLASSES = 9
EPOCHS = 2
PATIENCE = 5
TRAIN_PATH= '/Datasets/Train/'
VALID_PATH = '/Datasets/Test/'
MODEL_CHECK_WEIGHT_NAME = 'resnet_monki_v1_chk.h5'



# Define model to be used we freeze the pre trained resnet model weight, and add few layer on top of it to utilize our custom dataset
K.set_learning_phase(0)
model = ResNet50(input_shape=(224,224,3),include_top=False, weights='imagenet', pooling='avg')
K.set_learning_phase(1)
x = model.output
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
output = Dense(N_CLASSES, activation='softmax', name='custom_output')(x)
custom_resnet = Model(inputs=model.input, outputs = output)

for layer in model.layers:
    layer.trainable = False

custom_resnet.compile(Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
custom_resnet.summary()



# 4. Load dataset to be used
datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
traingen = datagen.flow_from_directory(TRAIN_PATH, target_size=(224,224), batch_size=32, class_mode='categorical')
validgen = datagen.flow_from_directory(VALID_PATH, target_size=(224,224), batch_size=32, class_mode='categorical', shuffle=False)


# 5. Train Model we use ModelCheckpoint to save the best model based on validation accuracy
es_callback = EarlyStopping(monitor='val_acc', patience=PATIENCE, mode='max')
mc_callback = ModelCheckpoint(filepath=MODEL_CHECK_WEIGHT_NAME, monitor='val_acc', save_best_only=True, mode='max')
train_history = custom_resnet.fit_generator(traingen, steps_per_epoch=len(traingen), epochs= EPOCHS, validation_data=traingen, validation_steps=len(validgen), verbose=2, callbacks=[es_callback, mc_callback])


model.save('custom_resnet.h5')

It successfully trained. To load and test this model on new images, I used the below code:

from keras.models import load_model
import cv2
import numpy as np

class_names = ['A', 'B', 'C', 'D', 'E','F', 'G', 'H', 'R']

model = load_model('custom_resnet.h5')

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

img = cv2.imread('/path to image/4.jpg')
img = cv2.resize(img,(224,224))
img = np.reshape(img,[1,224,224,3])

classes = np.argmax(model.predict(img), axis = -1)

print(classes)

It outputs:

[1915]

Why wouldn't it give out the actual value of the class and why the index is too big? I only have 9 classes!

Thanks

2
  • can you print print(model.predict(img).shape) Commented Apr 22, 2020 at 19:58
  • yes, it is (1, 2048) Commented Apr 22, 2020 at 20:00

2 Answers 2

1

You have saved the original resnet_base instead of your custom model.

You did model.save('custom_resnet.h5')

But, model = ResNet50(input_shape=(224,224,3),include_top=False, weights='imagenet', pooling='avg')

You need to save the custom_resnet model with custom_resnet.save('custom_resnet.h5')

That's why when you're using predict, you're getting (1,2048) shaped features not actual predictions.

Updated code:

from keras.applications.resnet50 import ResNet50, preprocess_input
from keras.layers import Dense, Dropout
from keras.models import Model
from keras.optimizers import Adam, SGD
from keras.preprocessing.image import ImageDataGenerator, image
from keras.callbacks import EarlyStopping, ModelCheckpoint
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
from keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGE = True

# Define some constant needed throughout the script
N_CLASSES = 9
EPOCHS = 2
PATIENCE = 5
TRAIN_PATH= '/Datasets/Train/'
VALID_PATH = '/Datasets/Test/'
MODEL_CHECK_WEIGHT_NAME = 'resnet_monki_v1_chk.h5'



# Define model to be used we freeze the pre trained resnet model weight, and add few layer on top of it to utilize our custom dataset
K.set_learning_phase(0)
model = ResNet50(input_shape=(224,224,3),include_top=False, weights='imagenet', pooling='avg')
K.set_learning_phase(1)
x = model.output
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
output = Dense(N_CLASSES, activation='softmax', name='custom_output')(x)
custom_resnet = Model(inputs=model.input, outputs = output)

for layer in model.layers:
    layer.trainable = False

custom_resnet.compile(Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
custom_resnet.summary()



# 4. Load dataset to be used
datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
traingen = datagen.flow_from_directory(TRAIN_PATH, target_size=(224,224), batch_size=32, class_mode='categorical')
validgen = datagen.flow_from_directory(VALID_PATH, target_size=(224,224), batch_size=32, class_mode='categorical', shuffle=False)


# 5. Train Model we use ModelCheckpoint to save the best model based on validation accuracy
es_callback = EarlyStopping(monitor='val_acc', patience=PATIENCE, mode='max')
mc_callback = ModelCheckpoint(filepath=MODEL_CHECK_WEIGHT_NAME, monitor='val_acc', save_best_only=True, mode='max')
train_history = custom_resnet.fit_generator(traingen, steps_per_epoch=len(traingen), epochs= EPOCHS, validation_data=traingen, validation_steps=len(validgen), verbose=2, callbacks=[es_callback, mc_callback])


custom_resnet.save('custom_resnet.h5')

Inference code:

from keras.models import load_model
import cv2
import numpy as np

class_names = ['A', 'B', 'C', 'D', 'E','F', 'G', 'H', 'R']

model = load_model('custom_resnet.h5')

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

img = cv2.imread('/path to image/4.jpg')
img = cv2.resize(img,(224,224))
img = np.reshape(img,[1,224,224,3])

classes = np.argmax(model.predict(img), axis = -1)

print(classes)
Sign up to request clarification or add additional context in comments.

Comments

0

use np.argmax(model.predict(img)[0], axis = -1) i am reading from zero index of model.predict

1 Comment

as per Burak Bozbey on facebook plz save "custom_resnet" not the "model"

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.