Here is an autoencoder I’m working on from tutorial:https://debuggercafe.com/implementing-deep-autoencoder-in-pytorch/
I’m just learning about autoencoders and I’ve modified the source encode a custom small dataset which consists of:
[0,1,0,1,0,1,0,1,0],[0,1,1,0,0,1,0,1,0],[0,1,1,0,0,1,0,1,0],[0,1,1,0,0,1,0,1,0]
It seems to work ok, but I’m unsure how to access the lower dimensional embedding values of dimension 2 (set by parameter out_features).
I've added a methods to the Autoencoder class to return the embedding , is this the recommended method of accessing the embedding's ?
Code:
import torch
import torchvision
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
from torchvision.utils import save_image
import warnings
import os
# import packages
import os
import torch
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torchvision import datasets
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import numpy as np
# utility functions
def get_device():
if torch.cuda.is_available():
device = 'cuda:0'
else:
device = 'cpu'
return device
device = get_device()
features = torch.tensor(np.array([ [0,1,0,1,0,1,0,1,0],[0,1,1,0,0,1,0,1,0],[0,1,1,0,0,1,0,1,0],[0,1,1,0,0,1,0,1,0] ])).float()
tic_tac_toe_data_loader = torch.utils.data.DataLoader(features, batch_size=1, shuffle=True)
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.fc1 = nn.Linear(in_features=9, out_features=2)
def forward(self, x):
return F.sigmoid(self.fc1(x))
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.fc1 = nn.Linear(in_features=2, out_features=9)
def forward(self, x):
return F.sigmoid(self.fc1(x))
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
self.fc1 = Encoder()
self.fc2 = Decoder()
def forward(self, x):
return self.fc2(self.fc1(x))
net = Autoencoder()
net.to(device)
NUM_EPOCHS = 50
LEARNING_RATE = 1e-3
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE)
# image transformations
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
outputs = None
def train(net, trainloader, NUM_EPOCHS):
train_loss = []
for epoch in range(NUM_EPOCHS):
running_loss = 0.0
for data in trainloader:
img = data
img = img.to(device)
img = img.view(img.size(0), -1)
# print('img.shape' , img.shape)
optimizer.zero_grad()
outputs = net(img)
loss = criterion(outputs, img)
loss.backward()
optimizer.step()
running_loss += loss.item()
loss = running_loss / len(trainloader)
train_loss.append(loss)
return train_loss
# train the network
train_loss = train(net, tic_tac_toe_data_loader, NUM_EPOCHS)
I can access the lower dimensional embedding using
print(Encoder().forward( torch.tensor(np.array([0,1,0,1,0,1,0,1,0])).float()))
But is this using the trained weight values for the embedding ? If I call Encoder multiple times with same values:
print(Encoder().forward( torch.tensor(np.array([0,1,0,1,0,1,0,1,0])).float()))
print(Encoder().forward( torch.tensor(np.array([0,1,0,1,0,1,0,1,0])).float()))
different results are returned:
tensor([0.5083, 0.5020], grad_fn=<SigmoidBackward>)
tensor([0.4929, 0.6940], grad_fn=<SigmoidBackward>)
Why is this the case ? Is an extra training step being invoked as a result of calling Encoder ?