Is it possible to create a dataframe from few 1d arrays and place them as columns? If I create a dataframe from 1 1d array everything is ok:
arr1 = np.array([11, 12, 13, 14, 15])
arr1_arr2_df = pd.DataFrame(data=arr1, index=None, columns=None)
arr1_arr2_df
Out:
0
0 11
1 12
2 13
3 14
4 15
But If make a datafreme form 2 arrays they are placed is rows:
arr1 = np.array([11, 12, 13, 14, 15])
arr2 = np.array([21, 22, 23, 24, 25])
arr1_arr2_df = pd.DataFrame(data=(arr1,arr2), index=None, columns=None)
arr1_arr2_df
Out:
0 1 2 3 4
0 11 12 13 14 15
1 21 22 23 24 25
I know that I can achieve it by using transpose:
arr1_arr2_df = arr1_arr2_df.transpose()
arr1_arr2_df
Out:
0 1
0 11 21
1 12 22
2 13 23
3 14 24
4 15 25
But is it possible to get it from the start?
arr1_arr2_df = pd.DataFrame(data=(zip(arr1,arr2)), index=None, columns=None)pd.DataFrame(dict(enumerate((arr1,arr2)))). But really,zipdoes the job succinctly