2

I have a df:

  dog1  dog2  cat1  cat2  ant1  ant2
0    1     2     3     4     5     6
1    1     2     3     4     0     0
2    3     3     3     3     3     3
3    4     3     2     1     1     0

I want to add a new column based on the following conditions:

 if   max(dog1, dog2) > max(cat1, cat2) > max(ant1, ant2) ----->   2
 elif max(dog1, dog2) > max(cat1, cat2)                   ----->   1
 elif max(dog1, dog2) < max(cat1, cat2) < max(ant1, ant2) ----->  -2
 elif max(dog1, dog2) < max(cat1, cat2)                   ----->  -1
 else                                                     ----->   0

So it should become this:

  dog1  dog2  cat1  cat2  ant1  ant2   new
0    1     2     3     4     5     6    -2
1    1     2     3     4     0     0    -1
2    3     3     3     3     3     3     0
3    4     3     2     1     1     0     2     

I know how to do it with straightforward condition, but not this kind with max. What's the best way to do it?

3 Answers 3

1

You can use .max(axis=1) function in pandas for it:

conditions = [
       (df[['dog1','dog2']].max(axis=1) > df[['cat1','cat2']].max(axis=1)) & (df[['cat1','cat2']].max(axis=1) > df[['ant1','ant2']].max(axis=1)), 
       (df[['dog1','dog2']].max(axis=1) > df[['cat1','cat2']].max(axis=1)),
       (df[['dog1','dog2']].max(axis=1) < df[['cat1','cat2']].max(axis=1)) & (df[['cat1','cat2']].max(axis=1) < df[['ant1','ant2']].max(axis=1)), 
       (df[['dog1','dog2']].max(axis=1) < df[['cat1','cat2']].max(axis=1))]
choices = [2,1,-2,-1]
df['new'] = np.select(conditions, choices, default=0)

output:

   dog1  dog2  cat1  cat2  ant1  ant2  new
0     1     2     3     4     5     6   -2
1     1     2     3     4     0     0   -1
2     3     3     3     3     3     3    0
3     4     3     2     1     1     0    2
Sign up to request clarification or add additional context in comments.

Comments

1

You can use apply Documentation

def newrow(dog1,dog2,cat1,cat2,ant1,ant2):
    if max(dog1, dog2) > max(cat1, cat2) > max(ant1, ant2):
        return 2
    elif max(dog1, dog2) > max(cat1, cat2):
        return 1
    elif max(dog1, dog2) < max(cat1, cat2) < max(ant1, ant2):
        return -2
    elif max(dog1, dog2) < max(cat1, cat2):
        return -1
    return 0

df['new'] = df.apply(lambda x: newrow(*x), axis=1)

The new df will be

  dog1  dog2  cat1  cat2  ant1  ant2  new
0     1     2     3     4     5     6   -2
1     1     2     3     4     0     0   -1
2     3     3     3     3     3     3    0
3     4     3     2     1     1     0    2

Comments

0

It seems you looking for np.maximum(). Try to find it out at numpy maximum Hope it help.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.