First we need to get this out of the way, because I honestly believe it will make things less confusing - C does not pass any function arguments by reference, ever. C passes all function arguments by value. Sometimes, those values are pointers. This is not the same thing as pass-by-reference.
Among other things, pass-by-value means that any changes to a formal parameter are not reflected in the actual parameter. In your set_int function, x is a distinct object from a, and any changes to x do not affect a.
If we want a function to modify the value in a parameter, we must pass a pointer to that parameter:
void set_int( int *x )
{
*x = 22; // writes a new value to the thing x points to
}
int main( void )
{
int a = 10;
set_int( &a ); // foo writes a new value to a
return 0;
}
In the above code, we want the function set_int to update the variable a, so we must pass a pointer to a to the function.
x == &a // int * == int *
*x == a // int == int
Thus, writing a new value to the expression *x in set_int is the same as writing a new value to a in main. Any change to x itself is local to set_int.
Things get confusing when we add arrays to the mix. An array is not a pointer; however, unless it is the operand of the sizeof or unary & operators, or is a string literal used to initialize a character array in a declaration, an expression of type "N-element array of T" will be converted ("decay") to an expression of type "pointer to T" and the value of the expression will be the address of the first element.
When you call set_array(b), the expression b "decays" from type "4-element array of int" (int [4]) to type "pointer to int" (int *), and the value of the expression is the same as &b[0].
Here's another confusing thing - in a function parameter declaration, array declarations of type T a[N] and T a[] are interpreted as T *a - a is a pointer to T, not an array of T. So your prototype
void set_array(int b[4])
is interpreted as
void set_array(int *b)
and what it receives is a pointer to the first element. As a practical matter, this means that any changes to array[i] in set_array are reflected in b, but this is fallout from how C specifically treats array expressions, not a difference in parameter passing mechanisms. The argument is still being passed by value, it's just that the argument is a pointer value that's the result of a well-defined conversion operation on array expressions.
set_inttakes a plain old value.