This is a general python question. Is it possible to assign different variables to a class object and then perform different set of operations on those variables? I'm trying to reduce code but maybe this isn't how it works. For example, I'm trying to do something like this:
Edit: here is an abstract of the class and methods:
class Class:
def __init__(self, df):
self.df = df
def query(self, query):
self.df = self.df.query(query)
return self
def fill(self, filter):
self.df.update(df.filter(like=filter).mask(lambda x: x == 0).ffill(1))
return self
def diff(self, cols=None, axis=1):
diff = self.df[self.df.columns[~self.df.columns.isin(cols)]].diff(axis=axis)
self.df = diff.join(self.df[self.df.columns.difference(diff.columns)])
return self
def melt(self, cols, var=None, value=None):
return pd.melt(self.df, id_vars=columns, var_name=var, value_name=value)
I'm trying to use it like this:
df = pd.read_csv('data.csv')
df = Class(df)
df = df.query(query).forward_fill(include)
df_1 = df.diff(cols).melt(cols)
df_2 = df.melt(cols)
df_1 and df_2 should have different values, however they are the same as df_1. This issue is resolved if I use the class like this:
df_1 = pd.read_csv('data.csv')
df_2 = pd.read_csv('data.csv')
df_1 = Class(df_1)
df_2 = Class(df_2)
df_1 = df_1.query(query).forward_fill(include)
df_2 = df_2.query(query).forward_fill(include)
df_1 = df_1.diff(cols).melt(cols)
df_2 = df_2.melt(cols)
This results in extra code. Is there a better way to do this where you can use an object differently on different variables, or do I have to create seperate objects if I'm trying to have two variables perform separate operations and return different values?
oper_1andoper_2are doing?pandasdataframe manipulations chained togetherClassthat lets us reproduce the error. You also need to include both the expected and observed output.2 + 5and3 + 4produce the same output as well, but that doesn't mean either one is wrong.