I have tried unsuccessfully to create a bar plot of a time series dataset. I have tried converting the dates to Pandas Datetime objects, Timestamp Objects, primitive strings, floats, and ints. No matter what I do, I get the following error: TypeError: float() argument must be a string or a number, not 'Timestamp' Here are a few minimal examples that produce the error:
- Here, the 'Date' object is of type <class 'pandas._libs.tslibs.timestamps.Timestamp'>, so I know why this doesn't work:
import matplotlib.pylab as plt
import matplotlib.dates as mdates
import seaborn as sns
def main():
path = 'Data/AQ+RX Counts.csv'
df = pd.read_csv(path, parse_dates=['Date'], index_col=['Date'])
weekly_df = df.resample('W').mean().reset_index()
weekly_df['count'] = df['count'].resample('W').sum().reset_index()
sns.barplot(x = 'Date', y='count', data = weekly_df)
plt.show()
main()
- I then tried making the dates floats, intending to format them back to dates after, but this still doesnt work:
dates = mdates.datestr2num(weekly_df.Date.astype(str))
weekly_df['n_dates'] = dates
sns.barplot(x = 'n_dates', y='count', data = weekly_df)
plt.show()
- I also tried making them integers, to no avail:
dates = mdates.datestr2num(weekly_df.Date.astype(str))
dates = dates.astype(int)
dates = pd.Series(dates)
weekly_df['n_dates'] = dates
sns.barplot(x = 'n_dates', y='count', data = weekly_df)
plt.show()
I've tried many other variations, and all produce the same error. I've even compared it to other code and verified that all the types are identical, and the comparison code works fine. I am at a complete loss of where to go from here.
Dataframe:
Date,WSA,WSV,WDV,WSM,SGT,T2M,T10M,DELTA_T,PBAR,SRAD,RH,PM25,AQI,count
2015-01-01,1.0708333333333335,0.8750000000000001,132.95833333333334,3.4708333333333337,35.39166666666667,30.72916666666667,30.625,-0.11666666666666667,738.8249999999998,72.66666666666667,99.75416666666666,24.80833333333333,73.30793131580873,0.0
2015-01-02,1.1086956521739129,0.9391304347826086,148.47826086956522,3.734782608695653,32.46521739130434,34.39130434782609,34.27826086956521,-0.11739130434782602,738.3478260869565,61.39130434782609,100.01304347826084,23.500000000000004,64.15072523318715,4.0
2015-01-03,1.0173913043478258,0.7173913043478259,168.04347826086956,3.773913043478261,42.71739130434783,36.24782608695652,36.160869565217396,-0.09565217391304348,739.4434782608695,49.60869565217392,100.76956521739132,20.460869565217394,55.65271063058384,0.0
2015-01-04,1.0,0.6,159.95833333333334,3.85,49.15,38.8875,38.66666666666666,-0.225,741.5000000000001,31.54166666666667,101.47916666666669,13.012499999999998,46.835258118800965,0.0
2015-01-05,1.0333333333333334,0.4416666666666667,137.0,4.0,57.56666666666666,42.99583333333333,42.94583333333333,-0.04999999999999995,742.5333333333333,44.58333333333334,101.00416666666666,16.654166666666665,52.420271225456766,4.0
2015-01-06,0.7818181818181817,0.5590909090909091,114.72727272727272,3.654545454545455,42.86818181818182,40.7409090909091,41.09545454545454,0.36818181818181817,740.9045454545453,48.27272727272727,100.57727272727274,21.954545454545453,67.31833852518514,6.0
2015-01-07,0.9739130434782608,0.8304347826086954,110.82608695652172,3.956521739130436,30.817391304347833,40.36521739130435,40.59565217391304,0.22173913043478266,739.8652173913043,60.04347826086956,100.19565217391305,24.456521739130434,72.3472505968891,6.0
2015-01-08,0.9833333333333336,0.8250000000000001,156.5,4.208333333333333,32.67083333333333,41.520833333333336,41.36666666666667,-0.12916666666666668,736.35,69.58333333333333,99.95833333333331,22.274999999999995,65.77072473472253,10.0
2015-01-09,0.9583333333333331,0.7291666666666669,133.70833333333334,3.3791666666666664,39.645833333333336,42.279166666666654,42.15833333333333,-0.11666666666666665,735.2041666666665,60.41666666666666,100.04166666666669,19.370833333333334,59.08512936837911,10.0
2015-01-10,0.9666666666666668,0.7583333333333336,164.5,3.675,37.34583333333333,42.96250000000001,42.775,-0.2,734.2875,41.5,100.12083333333337,14.658333333333335,49.31465266245389,0.0
