I have some R code that puts together demographic data from the Census for all of states in the US into a list object. The block-level code can take a week to run as a sequential loop since there are ~11M blocks, so I am trying to parallelize the loop over states to make it faster. I have accomplished this goal with this:
states <- c("AL","AK","AZ","AR","CA","CO","CT","DE","FL","GA","HI",
"ID","IL","IN","IA","KS","KY","LA","ME","MD","MA","MI",
"MN","MS","MO","MT","NE","NV","NH","NJ","NM","NY","NC",
"ND","OH","OK","OR","PA","RI","SC","SD","TN","TX","UT",
"VT","VA","WA","WV","WI","WY","DC","PR")
library(future.apply)
plan(multiprocess)
ptm <- proc.time()
CensusObj_block_age_sex = list()
CensusObj_block_age_sex[states] <- future_lapply(states, function(s){
county <- census_geo_api(key = "XXX", state = s, geo = "county", age = TRUE, sex = TRUE)
tract <- census_geo_api(key = "XXX", state = s, geo = "tract", age = TRUE, sex = TRUE)
block <- census_geo_api(key = "XXX", state = s, geo = "block", age = TRUE, sex = TRUE)
censusObj[[s]] <- list(state = s, age = TRUE, sex = TRUE, block = block, tract = tract, county = county)
}
)
However, I need to make it more robust. Sometimes there are problem with the Census API, so I would like the CensusObj to be updated at each state iteration so that I don't loose my completed data if something wrong. That way I can restart the loop over the remaining state if something does goes wrong (like if I spell "WY" as "WU")
Would it be possible to accomplish this somehow? I am open to other methods of parallelization.
The code above runs, but it seems to run into memory issues:
Error: Failed to retrieve the value of MultisessionFuture (future_lapply-3) from cluster RichSOCKnode #3 (PID 80363 on localhost ‘localhost’). The reason reported was ‘vector memory exhausted (limit reached?)’. Post-mortem diagnostic: A process with this PID exists, which suggests that the localhost worker is still alive.
I have R_MAX_VSIZE = 8Gb in my .Renviron, but I am not sure how that would get divided between the 8 cores on my machine. This all suggests that I need to store the results of each iteration rather than try to keep it all in memory, and then append the objects together at the end.
saveRDS()to save each result individually somewhere. You can check that it already exists if you have to restart the loop. And combine the results later.s) is the way to go.