Here is the simplified dataset:
Character x0 x1
0 T 0.0 1.0
1 h 1.1 2.1
2 i 2.2 3.2
3 s 3.3 4.3
5 i 5.5 6.5
6 s 6.6 7.6
8 a 8.8 9.8
10 s 11.0 12.0
11 a 12.1 13.1
12 m 13.2 14.2
13 p 14.3 15.3
14 l 15.4 16.4
15 e 16.5 17.5
16 . 17.6 18.6
The simplified dataset is generated by the following code:
ch = ['T']
x0 = [0]
x1 = [1]
string = 'his is a sample.'
for s in string:
ch.append(s)
x0.append(round(x1[-1]+0.1,1))
x1.append(round(x0[-1]+1,1))
df = pd.DataFrame(list(zip(ch, x0, x1)), columns = ['Character', 'x0', 'x1'])
df = df.drop(df.loc[df['Character'] == ' '].index)
x0 and x1 represents the starting and ending position of each Character, respectively. Assume that the distance between any two adjacent characters equals to 0.1. In other words, if the difference between x0 of a character and x1 of the previous character is 0.1, the two characters belongs to the same string. If such difference is larger than 0.1, the character should be the start of a new string, etc. I need to produce a dataframe of strings and their respective x0 and x1, which is done by looping through the dataframe using .iterrows()
string = []
x0 = []
x1 = []
for index, row in df.iterrows():
if index == 0:
string.append(row['Character'])
x0.append(row['x0'])
x1.append(row['x1'])
else:
if round(row['x0']-x1[-1],1) == 0.1:
string[-1] += row['Character']
x1[-1] = row['x1']
else:
string.append(row['Character'])
x0.append(row['x0'])
x1.append(row['x1'])
df_string = pd.DataFrame(list(zip(string, x0, x1)), columns = ['String', 'x0', 'x1'])
Here is the result:
String x0 x1
0 This 0.0 4.3
1 is 5.5 7.6
2 a 8.8 9.8
3 sample. 11.0 18.6
Is there any other faster way to achieve this?