I want to get all rows of a dataframe (df2) where the city column value and postcode column value also exist in another dataframe (df1). Important is here that I want the combination of both columns and not look at the column individually.
My approach was this:
#1. Get all combinations
df_combinations=np.array(df1.select("Ort","Postleitzahl").dropDuplicates().collect())
sc.broadcast(df_combinations)
#2.Define udf
def combination_in_vx(ort,plz):
for arr_el in dfSpark_combinations:
if str(arr_el[0]) == ort and int(arr_el[1]) == plz:
return True
return False
combination_in_vx = udf(combination_in_vx, BooleanType())
#3.
df_tmp=df_2.withColumn("Combination_Exists", combination_in_vx('city','postcode'))
df_result=df_tmp.filter(df_tmp.Combination_Exists)
Although this should theoretically work it takes forever! Does anybody know about a better solution here? Thank you very much!