0

Below is code I've written for binary classification in PyTorch:

%reset -f

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
import torch.utils.data as data_utils
import torch.nn as nn
import torch.nn.functional as F


device = 'cpu'
num_epochs = 10

hidden_size = 500 
num_classes = 2

learning_rate = .001

torch.manual_seed(24)

x1 = np.array([0,0])
x2 = np.array([0,1])
x3 = np.array([1,0])
x4 = np.array([1,1])
x = torch.tensor([x1,x2,x3,x4]).float()
y = torch.tensor([1,0,1,1]).long()

train = data_utils.TensorDataset(x,y)
train_loader = data_utils.DataLoader(train , batch_size=2 , shuffle=True)



input_size = len(x[0])

def weights_init(m):
    if type(m) == nn.Linear:
        m.weight.data.normal_(0.0, 1)

class NeuralNet(nn.Module) : 
    def __init__(self, input_size, hidden_size, num_classes) : 
        super(NeuralNet, self).__init__()
        self.fc1 = nn.Linear(input_size , hidden_size)
        self.fc2 = nn.Linear(hidden_size , 100)
        self.fc3 = nn.Linear(100 , num_classes)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x) : 
        out = self.fc1(x)
        out = self.sigmoid(out)
        out = self.fc2(out)
        out = self.sigmoid(out)
        out = self.fc3(out)
        out = self.sigmoid(out)
        return out

model = NeuralNet(input_size, hidden_size, num_classes).to(device)
model.apply(weights_init)

criterionCE = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
loss_values = []

for i in range(0 , 140) :
    print('in i' , i)
    total_step = len(train_loader)
    for epoch in range(num_epochs) :
        for i,(images , labels) in enumerate(train_loader) : 
            images = images.to(device)
            labels = labels.to(device)

            outputs = model(images)
            print('outputs' , outputs)
            loss = criterionCE(outputs , labels)
            loss_values.append(loss)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

    outputs = model(x)

    print(outputs.data.max(1)[1])

This code throws an error :

~/opt/miniconda3/envs/ds1/lib/python3.8/site-packages/torch/nn/functional.py in binary_cross_entropy(input, target, weight, size_average, reduce, reduction)
   2067                       stacklevel=2)
   2068     if input.numel() != target.numel():
-> 2069         raise ValueError("Target and input must have the same number of elements. target nelement ({}) "
   2070                          "!= input nelement ({})".format(target.numel(), input.numel()))
   2071 

ValueError: Target and input must have the same number of elements. target nelement (2) != input nelement (4)

I printed where I think is the cause of the error:

print('outputs' , outputs)

renders

outputs tensor([[9.9988e-01, 1.4011e-05],
        [9.9325e-01, 1.2087e-05]], grad_fn=<SigmoidBackward>)

So outputs should be a 2x1 instead of a 2x2 result. Have I not defined the setup of the model correctly? As I'm using sigmoid shouldn't a 2x1 output be created instead of 2x2?

1 Answer 1

1

If you are working on a binary classification task your model should only output one logit. Since you've set self.fc3 to have 2 neurons, you will get 2 logits as the output. Therefore, you should set self.fc3 as nn.Linear(100 , 1).

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.