I have a DataFrame from Pandas:
import pandas as pd
data = [{'c1':'aaa', 'c2':100, 'c3': 99, 'c4': 0}, {'c1':'bbb','c2':110, 'c3': 89, 'c4': 0},
{'c1':'aaa','c2':NaN,'c3': 93, 'c4': 0},{'c1':'ccc', 'c2':130,'c3': 77, 'c4': 0},
{'c1':'ddd','c2':140,'c3': 54, 'c4': 0}, {'c1':'bbb','c2':NaN,'c3': 76, 'c4': 0},
{'c1':'ddd', 'c2':NaN,'c3': 75, 'c4': 0}]
df = pd.DataFrame(data)
print df
Output:
c1 c2 c3 c4
0 'aaa' 100 99 0
1 'bbb' 110 89 0
2 'aaa' 100 93 0
3 'ccc' 130 77 0
4 'ddd' 140 54 0
5 'bbb' 110 76 0
6 'ddd' 140 75 0
Now, I want for every row that matches the column c1, set the column c4 equals than the column c2 of the another row that matches the first field. The result:
c1 c2 c3 c4
0 'aaa' 100 99 0
1 'bbb' 110 89 0
2 'aaa' 100 93 100
3 'ccc' 130 77 0
4 'ddd' 140 54 0
5 'bbb' 110 76 110
6 'ddd' 140 75 140
This dataframe is an example, the real dataframe has more columns and much more rows (around 4 million). My initial idea was this:
for index, row in df.iterrows():
df[df.c1==row.c1].iloc[1].c4= row.c2
There can only be another matching row. Obviously, using iterrows the process is extremely slow.
df.groupby("c1")['c2'].ffill()would do I think