1

I'm playing with Angular but can't wrap my head around the following problem.

I want to use a javascript code (SunLight.js from the repository https://github.com/antarktikali/threejs-sunlight) in my Angular project.

But this Sunlight.js uses THREE from Three.js. When I call this SunLight javascript object in my Typescript code I see an error the THREE object is undefined. See image below.

How can I let SunLight.js get access to the three module in my Angular project?

Error log

This is my setup:

I'm including the SunLight.js in a services folder

SunLight.js in folder structure

In angular.json I define the SunLight.js script reference

angular.json ref to SunLight Script

In my typeScript file I use it as follow and seems to find the SunLight object.

enter image description here

enter image description here

enter image description here

This is the SunLight.js code from repository https://github.com/antarktikali/threejs-sunlight

SunLight = function (
    coordinates_,
    north_,
    east_,
    nadir_,
    sun_distance_ = 1.0
) {
THREE.Object3D.call( this );
this.type = "SunLight";

// Latitude and longtitude of the current location on the world
// Measured as decimal degrees. North and east is positive
this.coordinates = new THREE.Vector2();
this.coordinates.copy( coordinates_ );

// The unit vector that is pointing the north in the scene
this.north = new THREE.Vector3();
this.north.copy( north_ );

// The unit vector that is pointing the east in the scene
this.east = new THREE.Vector3();
this.east.copy( east_ );

// The unit vector that is pointing the ground in the scene, same as gravity
this.nadir = new THREE.Vector3();
this.nadir.copy( nadir_ );

// The distance of the directional light from this object and it's target.
// the given north vector is multiplied with this value and the resulting
// vector is the displacement of the directional light from the target.
this.sun_distance = sun_distance_;

// The azimuth of the sun. Starts from the north, clockwise. In radians.
this.azimuth = 0.0;
// The elevation of the sun. Starts from the horizon. In radians.
this.elevation = 0.0;

// Local date and time
this.localDate = new Date();

// The directional light in Three.js is managed by a directional vector.
// To make life easier, I'm adding the light as a child to this hinge object
// and rotating this object in order to set the light's direction
this.hingeObject = new THREE.Object3D();
this.add( this.hingeObject );

// The directional light which is used as the sun light
this.directionalLight = new THREE.DirectionalLight(); 
this.directionalLight.castShadow = true;
this.hingeObject.add( this.directionalLight );

// Add the target of the directional light as a child to this object, so
// that it's world matrix gets updated automatically when this object's
// position is changed.
this.add( this.directionalLight.target );
};

SunLight.prototype = Object.assign(
Object.create( THREE.Object3D.prototype ),
{
    constructor: SunLight,

    toJSON: function ( meta ) {
        var data = THREE.Object3D.prototype.toJSON.call( this, meta );
        // TODO
        // not implemented yet
        return data;
    }
} );

// Updates the orientation of the sun using the coordinates and the localDate
SunLight.prototype.updateOrientation = function ( update_date_ = true ) {
// Update the local date if the parameter is true (true by default).
if ( update_date_ ) { 
    this.localDate = new Date();
}

var solarOrientationCalculator = new this.SolarOrientationCalculator();

var sunOrientation = solarOrientationCalculator.getAzEl(
        this.coordinates.x,
        this.coordinates.y,
        this.localDate
    );
this.azimuth = this._degreesToRadians( sunOrientation.azimuth );
this.elevation = this._degreesToRadians( sunOrientation.elevation );
}

// Updates the directional light based on the sun's orientation and the north
// vector. This is actually done by rotating the hinge object which is the
// parent of the directional light.
SunLight.prototype.updateDirectionalLight = function () {
// If the elevation is less than zero, there is no sun light.
// Starting from 2 degrees, start fading the light
var FADE_OUT_THRESHOLD = 2.0;
var elevationDegrees = (180.0 * this.elevation / Math.PI );
if ( elevationDegrees <= 0.0 ) {
    this.directionalLight.intensity = 0.0;
    return;
} else if ( elevationDegrees <= FADE_OUT_THRESHOLD) {
    this.directionalLight.intensity = elevationDegrees / FADE_OUT_THRESHOLD;
} else {
    this.directionalLight.intensity = 1.0;
}
// Reset the hingeObject's quaternion
this.hingeObject.quaternion.copy( new THREE.Quaternion() );

this.directionalLight.position.copy( this.north );
this.directionalLight.position.multiplyScalar( this.sun_distance );
var rotator = new THREE.Quaternion();
rotator.setFromAxisAngle( this.east, this.elevation );
this.hingeObject.quaternion.premultiply( rotator );
rotator.setFromAxisAngle( this.nadir, this.azimuth );
this.hingeObject.quaternion.premultiply( rotator );
}

SunLight.prototype._degreesToRadians = function ( degrees_ ) {
return ( degrees_ % 360.0 ) * Math.PI / 180.0;
}

// ---
// Methods for calculating the Sun's orientation go below
// ---

SunLight.prototype.SolarOrientationCalculator = function() {
this.a = "some val";
}

SunLight.prototype.SolarOrientationCalculator.prototype.getAzEl =
function( lat_, lon_, date_ = new Date() )
{
var jday = this._getJD( date_ );
var tl = this._getTimeLocal( date_ );
var tz = date_.getTimezoneOffset() / -60;
var dst = true;
var total = jday + tl/1440.0 - tz/24.0;
var T = this._calcTimeJulianCent( total );
sunOrientation = this._calcAzEl( false, T, tl, lat_, lon_, tz );
return sunOrientation;
}

SunLight.prototype.SolarOrientationCalculator.prototype._getJD = 
function( date_ = new Date() )
{
var docmonth = date_.getMonth() + 1;
var docday = date_.getDate();
var docyear = date_.getFullYear();
if ( (this._isLeapYear(docyear)) && (docmonth == 2) ) {
    if (docday > 29) {
        docday = 29;
    } 
} else {
    // 1900 is a known non-leap year
    if (docday > new Date(1900, docmonth, 0).getDate()) {
        docday = new Date(1900, docmonth, 0).getDate();
    }
}
if (docmonth <= 2) {
    docyear -= 1;
    docmonth += 12;
}
var A = Math.floor(docyear/100);
var B = 2 - A + Math.floor(A/4);
var JD = Math.floor(365.25*(docyear + 4716)) + 
    Math.floor(30.6001*(docmonth+1)) + docday + B - 1524.5;
return JD;
}

// Returns the current time in minutes without the DST
SunLight.prototype.SolarOrientationCalculator.prototype._getTimeLocal = 
function( date_ = new Date() )
{
var totalMinutes = 0.0;
totalMinutes += 60.0 * date_.getHours();
// TODO
// Remove one hour if DST is in effect
totalMinutes += date_.getMinutes();
totalMinutes += date_.getSeconds() / 60.0;
return totalMinutes;
}

SunLight.prototype.SolarOrientationCalculator.prototype._calcTimeJulianCent =
function( jd )
{
var T = (jd - 2451545.0)/36525.0;
return T;
}

SunLight.prototype.SolarOrientationCalculator.prototype._calcAzEl =
function( output, T, localtime, latitude, longitude, zone )
{
var result = { "azimuth": 0.0, "elevation": 0.0 };
var eqTime = this._calcEquationOfTime(T);
var theta  = this._calcSunDeclination(T);
var solarTimeFix = eqTime + 4.0 * longitude - 60.0 * zone;
var earthRadVec = this._calcSunRadVector(T);
var trueSolarTime = localtime + solarTimeFix;
while (trueSolarTime > 1440)
{
    trueSolarTime -= 1440;
}
var hourAngle = trueSolarTime / 4.0 - 180.0;
if (hourAngle < -180) 
{
    hourAngle += 360.0;
}
var haRad = this._degToRad(hourAngle);
var csz = Math.sin(this._degToRad(latitude)) *
    Math.sin(this._degToRad(theta)) + Math.cos(this._degToRad(latitude)) *
    Math.cos(this._degToRad(theta)) * Math.cos(haRad);
if (csz > 1.0) 
{
    csz = 1.0;
} else if (csz < -1.0) 
{ 
    csz = -1.0;
}
var zenith = this._radToDeg(Math.acos(csz));
var azDenom = ( Math.cos(this._degToRad(latitude)) *
    Math.sin(this._degToRad(zenith)) );
if (Math.abs(azDenom) > 0.001) {
    azRad = (( Math.sin(this._degToRad(latitude)) *
        Math.cos(this._degToRad(zenith)) ) -
        Math.sin(this._degToRad(theta))) / azDenom;
    if (Math.abs(azRad) > 1.0) {
        if (azRad < 0) {
            azRad = -1.0;
        } else {
            azRad = 1.0;
        }
    }
    var azimuth = 180.0 - this._radToDeg(Math.acos(azRad))
    if (hourAngle > 0.0) {
        azimuth = -azimuth;
    }
} else {
    if (latitude > 0.0) {
        azimuth = 180.0;
    } else { 
        azimuth = 0.0;
    }
}
if (azimuth < 0.0) {
    azimuth += 360.0;
}
var exoatmElevation = 90.0 - zenith;

// Atmospheric Refraction correction

if (exoatmElevation > 85.0) {
    var refractionCorrection = 0.0;
} else {
    var te = Math.tan(this._degToRad(exoatmElevation));
    if (exoatmElevation > 5.0) {
        var refractionCorrection = 58.1 / te - 0.07 / (te*te*te) +
            0.000086 / (te*te*te*te*te);
    } else if (exoatmElevation > -0.575) {
        var refractionCorrection = 1735.0 + exoatmElevation *
            (-518.2 + exoatmElevation * (103.4 + exoatmElevation *
                (-12.79 + exoatmElevation * 0.711) ) );
    } else {
        var refractionCorrection = -20.774 / te;
    }
    refractionCorrection = refractionCorrection / 3600.0;
}

var solarZen = zenith - refractionCorrection;

result.azimuth = Math.floor(azimuth*100 +0.5)/100.0;
result.elevation = Math.floor((90.0-solarZen)*100+0.5)/100.0;
return result;
}

SunLight.prototype.SolarOrientationCalculator.prototype._isLeapYear = 
function( yr )
{
return ((yr % 4 == 0 && yr % 100 != 0) || yr % 400 == 0);
}

SunLight.prototype.SolarOrientationCalculator.prototype._radToDeg =
function( angleRad )
{
return (180.0 * angleRad / Math.PI);
}

SunLight.prototype.SolarOrientationCalculator.prototype._degToRad =
function( angleDeg )
{
return (Math.PI * angleDeg / 180.0);
}

SunLight.prototype.SolarOrientationCalculator.prototype._calcEquationOfTime =
function( t )
{
var epsilon = this._calcObliquityCorrection(t);
var l0 = this._calcGeomMeanLongSun(t);
var e = this._calcEccentricityEarthOrbit(t);
var m = this._calcGeomMeanAnomalySun(t);

var y = Math.tan(this._degToRad(epsilon)/2.0);
y *= y;

var sin2l0 = Math.sin(2.0 * this._degToRad(l0));
var sinm   = Math.sin(this._degToRad(m));
var cos2l0 = Math.cos(2.0 * this._degToRad(l0));
var sin4l0 = Math.sin(4.0 * this._degToRad(l0));
var sin2m  = Math.sin(2.0 * this._degToRad(m));

var Etime = y * sin2l0 - 2.0 * e * sinm + 4.0 * e * y * sinm * cos2l0 -
    0.5 * y * y * sin4l0 - 1.25 * e * e * sin2m;
return this._radToDeg(Etime)*4.0; // in minutes of time
}

SunLight.prototype.SolarOrientationCalculator.prototype._calcSunDeclination =
function( t )
{
var e = this._calcObliquityCorrection(t);
var lambda = this._calcSunApparentLong(t);

var sint = Math.sin(this._degToRad(e)) * Math.sin(this._degToRad(lambda));
var theta = this._radToDeg(Math.asin(sint));
return theta; // in degree
}


SunLight.prototype.SolarOrientationCalculator.prototype._calcSunRadVector =
function( t )
{
var v = this._calcSunTrueAnomaly(t);
var e = this._calcEccentricityEarthOrbit(t);
var R = (1.000001018 * (1 - e * e)) /
    (1 + e * Math.cos(this._degToRad(v)));
return R; // in AU
}

SunLight.prototype.SolarOrientationCalculator.prototype._calcObliquityCorrection =
function( t )
{
var e0 = this._calcMeanObliquityOfEcliptic(t);
var omega = 125.04 - 1934.136 * t;
var e = e0 + 0.00256 * Math.cos(this._degToRad(omega));
return e; // in degree
}


SunLight.prototype.SolarOrientationCalculator.prototype._calcSunApparentLong =
function( t )
{
var o = this._calcSunTrueLong(t);
var omega = 125.04 - 1934.136 * t;
var lambda = o - 0.00569 - 0.00478 * Math.sin(this._degToRad(omega));
return lambda; // in degrees
}

SunLight.prototype.SolarOrientationCalculator.prototype._calcGeomMeanLongSun = 
function(t)
{
var L0 = 280.46646 + t * (36000.76983 + t*(0.0003032));
while(L0 > 360.0)
{
    L0 -= 360.0;
}
while(L0 < 0.0)
{
    L0 += 360.0;
}
return L0; // in degrees
}

SunLight.prototype.SolarOrientationCalculator.prototype._calcEccentricityEarthOrbit = 
function(t)
{
var e = 0.016708634 - t * (0.000042037 + 0.0000001267 * t);
return e; // unitless
}

SunLight.prototype.SolarOrientationCalculator.prototype._calcGeomMeanAnomalySun = 
function(t)
{
var M = 357.52911 + t * (35999.05029 - 0.0001537 * t);
return M; // in degrees
}

SunLight.prototype.SolarOrientationCalculator.prototype._calcSunTrueAnomaly = 
function(t)
{
var m = this._calcGeomMeanAnomalySun(t);
var c = this._calcSunEqOfCenter(t);
var v = m + c;
return v; // in degrees
}

SunLight.prototype.SolarOrientationCalculator.prototype._calcMeanObliquityOfEcliptic = 
function(t)
{
var seconds = 21.448 - t*(46.8150 + t*(0.00059 - t*(0.001813)));
var e0 = 23.0 + (26.0 + (seconds/60.0))/60.0;
return e0; // in degrees
}

SunLight.prototype.SolarOrientationCalculator.prototype._calcSunTrueLong = 
function(t)
{
var l0 = this._calcGeomMeanLongSun(t);
var c = this._calcSunEqOfCenter(t);
var O = l0 + c;
return O; // in degrees
}

SunLight.prototype.SolarOrientationCalculator.prototype._calcSunEqOfCenter = 
function(t)
{
var m = this._calcGeomMeanAnomalySun(t);
var mrad = this._degToRad(m);
var sinm = Math.sin(mrad);
var sin2m = Math.sin(mrad+mrad);
var sin3m = Math.sin(mrad+mrad+mrad);
var C = sinm * (1.914602 - t * (0.004817 + 0.000014 * t)) + sin2m *
    (0.019993 - 0.000101 * t) + sin3m * 0.000289;
return C; // in degrees
}

Thanks in advance

1 Answer 1

1

Actually SunLight.js has a dependency of three.js which is not loaded before initialization of SunLight.js.

Though there are multiple ways to solve this problem.

One way is to load the three.js before SunLight.js in angular.json like below.

"scripts": [
   "node_modules/three/build/three.min.js",
   "src/services/Sunlight.js"
]

Another way is to modify SunLight.js like below

import * as THREE from 'three';
const SunLight = function (
     ...// rest of the SunLight.js code.

export default SunLight;

then remove it from angular.json and import it like below wherever you want

import SunLight from 'src/services/Sunlight'; //path will vary based on it's location 

By default Angular includes only *.ts files. As this is .js file, you need to update your tsconfig.app.json with file to be included(you can use wild cards if you have more .js files).

  "include": [
    "src/**/*.ts",
    "src/services/Sunlight.js"
  ],
Sign up to request clarification or add additional context in comments.

5 Comments

Hi Ravikumar, The first solution works. But I can't get the second one to work. It 'gives the following error TS7016: Could not find a declaration file for module 'src/services/SunLight'. 'D:/TMP/scanimo_02/scanimo/src/services/SunLight.js' implicitly has an 'any' type.
Hi Ravikumar, Many thanks for the help. I tried the second solution With adaptation to the tsconfig.app.json file, but the same error keeps showing on the ts file where I want to use the import. It keeps saying Error: src/app/viewer/viewer.component.ts:16:22 - error TS7016: Could not find a declaration file for module 'src/services/SunLight.js'. 'D:/TMP/scanimo_02/scanimo/src/services/SunLight.js' implicitly has an 'any' type. 16 import SunLight from 'src/services/SunLight.js';
I also updated the SunLight.js as follow -> import * as THREE from 'three'; SunLight = function () {} //Other functions here -> export default SunLight //placed at the end
@stickske, I tried and it worked perfectly. not sure what wrong in configurations.
yes very strange. I'll test in a fresh scene tomorrow. Also tested this without success. angular.io/guide/ngmodule-vs-jsmodule I must do something wrong as it keeps asking for a declaration file. Could it be something with the spec.ts or d.ts files?

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.