You can reference a variable in a query by using @
df_dict[i]=dfsource.query('COL1==@x')
So the total code looks like this
import pandas as pd
report=['A','B','C']
suffix='_US'
report2=[s + suffix for s in report]
print (report2) #result: ['A_US', 'B_US', 'C_US']
source = {'COL1': ['A','B','C'], 'COL2': ['D','E','F']}
dfsource=pd.DataFrame(source)
print(dfsource)
df_dict = {}
for i in report2:
df_dict[i]=pd.DataFrame()
for x in report:
df_dict[i]=dfsource.query('COL1==@x')
#df_dict[i]=dfsource.query('COL1=="A"') #Example, this works filtering for value A but not what I need.
print(df_dict['A_US'])
print(df_dict['B_US'])
print(df_dict['C_US'])
which outputs
COL1 COL2
0 A D
1 B E
2 C F
COL1 COL2
2 C F
COL1 COL2
2 C F
COL1 COL2
2 C F
However, I think you want to create a new dictionary based on the i and x of each list, then you can move the creation of the dataframe to the second for loop and then create a new key for each iteration.
import pandas as pd
report=['A','B','C']
suffix='_US'
report2=[s + suffix for s in report]
print (report2) #result: ['A_US', 'B_US', 'C_US']
source = {'COL1': ['A','B','C'], 'COL2': ['D','E','F']}
dfsource=pd.DataFrame(source)
print(dfsource)
df_dict = {}
for i in report2:
for x in report:
new_key = x + i
df_dict[new_key]=pd.DataFrame()
df_dict[new_key]=dfsource.query('COL1==@x')
for item in df_dict.items():
print(item)
Outputs 9 unique dataframes which are filtered based on whatever x value was passed.
('AA_US', COL1 COL2
0 A D)
('BA_US', COL1 COL2
1 B E)
('CA_US', COL1 COL2
2 C F)
('AB_US', COL1 COL2
0 A D)
('BB_US', COL1 COL2
1 B E)
('CB_US', COL1 COL2
2 C F)
('AC_US', COL1 COL2
0 A D)
('BC_US', COL1 COL2
1 B E)
('CC_US', COL1 COL2
2 C F)