I have the following dataset:
df = pd.DataFrame( {'user': {0: 1, 1: 1, 2: 1, 3: 2, 4: 2, 5: 2, 6: 2},
'date': {0: '1995-09-01', 1: '1995-09-02', 2: '1995-10-03', 3: '1995-10-04', 4: '1995-10-05', 5: '1995-11-07', 6: '1995-11-08'},
'x': {0: '1995-09-02', 1: '1995-09-02', 2: '1995-09-02', 3: '1995-10-05', 4: '1995-10-05', 5: '1995-10-05', 6: '1995-10-05'},
'y': {0: '1995-10-03', 1: '1995-10-03', 2: '1995-10-03', 3: '1995-11-08', 4: '1995-11-08', 5: '1995-11-08', 6: '1995-11-08'},
'c1': {0: '1', 1: '0', 2: '0', 3: '2', 4: '0', 5: '9', 6: '0'},
'c2': {0: '1', 1: '0', 2: '0', 3: '2', 4: '0', 5: '9', 6: '0'},
'c3': {0: '1', 1: '0', 2: '0', 3: '2', 4: '0', 5: '9', 6: '0'},
'VTX1': {0: 1, 1: 0, 2: 0, 3: 1, 4: 0, 5: 0, 6: 0},
'VTY1': {0: 0, 1: 1, 2: 0, 3: 0, 4: 0, 5: 1, 6: 0}} )
which gives me:
user date x y c1 c2 c3 VTX1 VTY1
0 1 1995-09-01 1995-09-02 1995-10-03 1 1 1 1 0
1 1 1995-09-02 1995-09-02 1995-10-03 0 0 0 0 1
2 1 1995-10-03 1995-09-02 1995-10-03 0 0 0 0 0
3 2 1995-10-04 1995-10-05 1995-11-08 2 2 2 1 0
4 2 1995-10-05 1995-10-05 1995-11-08 0 0 0 0 0
5 2 1995-11-07 1995-10-05 1995-11-08 9 9 9 0 1
6 2 1995-11-08 1995-10-05 1995-11-08 0 0 0 0 0
I want to replaces df[‘c1’] as follows.
- When df[‘date’]=df[‘x’],
change df[‘c1’] for the df[‘c1’] value when df[‘VTX1’]=1
In this example, for user 1, when df[‘date’]=df[‘x’] it happens to be on index 1. Here we want df['c1'] to be 1. Note that 1 is the value that user 1 has on df['c1'] when df['VTX1'] = 1.
So the end result would be:
user date x y c1 c2 c3 VTX1 VTY1
0 1 1995-09-01 1995-09-02 1995-10-03 1 1 1 1 0
1 1 1995-09-02 1995-09-02 1995-10-03 0 0 0 0 1
2 1 1995-10-03 1995-09-02 1995-10-03 0 0 0 0 0
3 2 1995-10-04 1995-10-05 1995-11-08 2 2 2 1 0
4 2 1995-10-05 1995-10-05 1995-11-08 2 0 0 0 0
5 2 1995-11-07 1995-10-05 1995-11-08 9 9 9 0 1
6 2 1995-11-08 1995-10-05 1995-11-08 0 0 0 0 0
df[‘date’]=df[‘x’]...doesnot match for any row, can you explain how does it match with the second row?VTX1value which is equal to1?