On Pandas 1.3.4 and Python 3.9.
So I'm having issues filtering for a partial piece of the string. The "Date" column is listed in the format of MM/DD/YYYY HH:MM:SS A/PM where the most recent one is on top. If the date is single digit (example: November 3rd), it does not have the 0 such that it is 11/3 instead of 11/03. Basically I'm looking to go look at column named "Date" and have python read parts of the string to filter for only today.
This is what the original csv looks like. This is what I want to do to the file. Basically looking for a specific date but not any time of that date and implement the =RIGHT() formula. However this is what I end up with with the following code.
from datetime import date
import pandas as pd
df = pd.read_csv(r'file.csv', dtype=str)
today = date.today()
d1 = today.strftime("%m/%#d/%Y") # to find out what today is
df = pd.DataFrame(df, columns=['New Phone', 'Phone number', 'Date'])
df['New Phone'] = df['Phone number'].str[-10:]
df_today = df['Date'].str.contains(f'{d1}',case=False, na=False)
df_today.to_csv(r'file.csv', index=False)
df = pd.read_csv(..., parse_dates=['Date'])? Then you can do, e.g.df[df.Date.dt.normalize()=='2021-11-03'].df=df.assign(NewPhone=df['Phone number'].str[-10:])#Create new columndf[df['date']==pd.Timestamp.today().date().strftime("%m/%d/%Y") ]# filter out dates that are not today