The title of this question used to be: Are there practical advantages to creating an iterator class compared to returning raw pointers from begin and end functions?
Recently I have been working on a code base which uses MFC and objects such as CArray<T, U>.
Some parts of new code which has been written make use of the STL and <algorithm> library.
For example
CArray<int int> carray;
carray // do stuff
std::vector<int> stlvector(begin(carray), end(carray));
stlvector.dostuff() // do stuff
I recently asked a question about creating iterators for a class such as CArray, which I do not have access to.
I now have some further questions about this. The first question can be found here. Here is my second question:
- Should the
beginandendfunctions return raw pointers or iterators?
In the linked question above, an example was provided as an answer which returns raw pointers. This answer was very similar to the implementation I used.
template<typename T, typename U>
auto begin(const CArray<T, U> &array>)
{
return &array[0];
}
template<typename T, typename U>
auto end(const CArray<T, U> &array>)
{
return (&array[array.GetCount() - 1]) + 1;
}
These functions return raw pointers. However I attempted to implement an iterator solution. So far I have not been successful.
The main reference which I used during my research can be found here:
First attempt
This is the first attempt that I made in finding a solution.
You can play with this code here.
#include <iostream>
#include <iterator>
#include <algorithm>
template <typename U>
class CArrayForwardIt
{
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = U;
using pointer = U*;
using reference = U&;
public:
CArrayForwardIt(pointer ptr)
: m_ptr(ptr)
{
}
// = default?
//CArrayForwardIt(CArrayForwardIt<U> other)
// : m_ptr(ptr)
// {
// }
reference operator*() const
{
return *m_ptr;
}
// what does this do, don't understand why operator-> is needed
// or why it returns a U* type
pointer operator->()
{
return m_ptr;
}
CArrayForwardIt& operator++()
{
++ m_ptr;
return *this;
}
CArrayForwardIt operator++(int)
{
CArrayForwardIt tmp(*this);
++ (*this);
return tmp;
}
friend bool operator==(const CArrayForwardIt& lhs, const CArrayForwardIt& rhs)
{
return lhs.m_ptr == rhs.m_ptr;
}
friend bool operator!=(const CArrayForwardIt& lhs, const CArrayForwardIt& rhs)
{
return !(lhs == rhs);
}
private:
pointer m_ptr;
};
template<typename T, typename U>
auto begin(const CArray<T, U> &array)
{
return CArrayForwardIt<U>(&array[0]);
}
template<typename T, typename U>
auto end(const CArray<T, U> &array)
{
return CArrayForwardIt<U>((&array[array.GetCount() - 1]) + 1);
}
int main()
{
CArray<int, int> c;
// do something to c
std::vector<int> v(begin(c), end(c));
return 0;
}
This is what happens when I try to compile this (with Visual Studio 2019 Pro).
no instance of constructor "std::vector<_Ty, _Alloc>::vector [with _Ty=int, _Alloc=std::allocator<int>]" matches argument list
'<function-style-cast>': cannot convert from 'contt TYPE*' to 'std::CArrayForwardIt<U>'
'std::vector<int, std::allocator<int>>::vector(std::vector<int, std::allocator<int>> &&, const _Alloc &) noexcept(<expr>)': cannot convert from argument 1 from 'void' to 'const unsigned int'
Being more familiar with gcc, I have little knowledge of how to understand this.
Second attempt
I made another two further attempts at this but they were quite similar.
One was to change my class CArrayForwardIt to inherit from iterator<std::forward_iterator_tag, std::ptrdiff_t, U, U*, U&>, and to remove the using... lines at the top of the class. This didn't seem to get me any closer to a solution.
In addition, I looked at the constructor definition for std::vector. See here.
I may be misunderstanding here, but it looks like std::vector requires a InputIt type argument.
Therefore I tried to change my class to be something like this:
#include <iostream>
#include <iterator>
#include <algorithm>
template <typename U>
class forward_iterator
{
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = U;
using pointer = U*;
using reference = U&;
public:
forward_iterator(pointer ptr)
: m_ptr(ptr)
{
}
// = default?
//forward_iterator(forward_iterator<U> other)
// : m_ptr(ptr)
// {
// }
reference operator*() const
{
return *m_ptr;
}
// what does this do, don't understand why operator-> is needed
// or why it returns a U* type
pointer operator->()
{
return m_ptr;
}
forward_iterator& operator++()
{
++ m_ptr;
return *this;
}
forward_iterator operator++(int)
{
forward_iterator tmp(*this);
++ (*this);
return tmp;
}
friend bool operator==(const forward_iterator& lhs, const forward_iterator& rhs)
{
return lhs.m_ptr == rhs.m_ptr;
}
friend bool operator!=(const forward_iterator& lhs, const forward_iterator& rhs)
{
return !(lhs == rhs);
}
private:
pointer m_ptr;
};
template<typename T, typename U>
auto begin(const CArray<T, U> &array)
{
return forward_iterator<U>(&array[0]);
}
template<typename T, typename U>
auto end(const CArray<T, U> &array)
{
return forward_iterator<U>((&array[array.GetCount() - 1]) + 1);
}
int main()
{
CArray<int, int> c;
// do something to c
std::vector<int> v(begin(c), end(c));
return 0;
}
This, perhaps unsurprisingly, did not compile either. At this point I became confused. std::vector appears to demand an InputIt type, which forward_iterator should work for, but it doesn't seem to make sense to redefine what forward_iterator is, even if I write this class outside of namespace std.
Question
I am fairly sure there should be a way to write an iterator class for the MFC CArray, which can be returned by begin and end functions. However, I am confused as to how to do this.
Further to the question of writing a working solution, I am beginning to wonder if there are any practical advantages to doing this? Does what I am trying to do even make sense? The raw pointer solution clearly works, so are there any advantages of investing the effort to write an iterator based solution? Can iterator solutions provide more sophisticated bounds checking, for example?