2

Data frame has a column 'decimal', I need to convert decimal to specific binary columns

Example: 3 (Decimal) --> 0000000000000011 (Binary)

df 
| datetime                | mc | vol | decimal |
|-------------------------|----|-----|---------|
| 2021-11-20 12:04:55.107 | PR | 50  | 1       |
| 2021-11-20 12:04:56.187 | PR | 50  | 1       |
| 2021-11-20 12:04:57.200 | PR | 50  | 3       |
| 2021-11-20 12:04:58.310 | PR | 50  | 3       |
| 2021-11-20 12:04:59.467 | PR | 50  | 5       |
| 2021-11-20 12:05:00.500 | PR | 50  | 5       |

Step 1: With the code I got the below binary table. Binary (0~15)

df_test['binary'] = df.decimal.apply(lambda x: format(int(x), '016b'))

| datetime                | mc | vol | binary           |
|-------------------------|----|-----|------------------|
| 2021-11-20 12:04:55.107 | PR | 50  | 0000000000000001 |
| 2021-11-20 12:04:56.187 | PR | 50  | 0000000000000001 |
| 2021-11-20 12:04:57.200 | PR | 50  | 0000000000000011 |
| 2021-11-20 12:04:58.310 | PR | 50  | 0000000000000011 |
| 2021-11-20 12:04:59.467 | PR | 50  | 0000000000000101 |
| 2021-11-20 12:05:00.500 | PR | 50  | 0000000000000101 |

Step 2: Pick value and create new column

df['B15'] = df['binary'].str[15]
df['B14'] = df['binary'].str[14]
df['B13'] = df['binary'].str[13]
df['B12'] = df['binary'].str[12]
df['B11'] = df['binary'].str[11]

Requirement Below

| datetime                | mc | vol | B11 | B12 | B13 | B14 | B15  |
|-------------------------|----|-----|-----|-----|-----|-----|------|
| 2021-11-20 12:04:55.107 | PR | 50  | 0   | 0   | 0   | 0   | 1    |
| 2021-11-20 12:04:56.187 | PR | 50  | 0   | 0   | 0   | 0   | 1    |
| 2021-11-20 12:04:57.200 | PR | 50  | 0   | 0   | 0   | 1   | 1    |
| 2021-11-20 12:04:58.310 | PR | 50  | 0   | 0   | 0   | 1   | 1    |
| 2021-11-20 12:04:59.467 | PR | 50  | 0   | 0   | 1   | 0   | 1    |
| 2021-11-20 12:05:00.500 | PR | 50  | 0   | 0   | 1   | 0   | 1    |

Is there any other efficient method.

1 Answer 1

1

If you only need the last 5 bits, you can use unpackbits:

import pandas as pd
import numpy as np

df = pd.DataFrame({'mc': ['PR', 'PR', 'PR', 'PR', 'PR', 'PR'],
                   'vol': [50, 50, 50, 50, 50, 50],
                   'decimal': [1, 1, 3, 3, 5, 5]})

bits = pd.DataFrame(np.unpackbits(df.decimal.to_numpy(np.uint8)[:, np.newaxis], axis=1)[:,-5:],
                    columns=[f'B{i}' for i in range(11, 16)])
res = pd.concat((df[['mc', 'vol']], bits),axis=1)

Result:

   mc  vol  B11  B12  B13  B14  B15
0  PR   50    0    0    0    0    1
1  PR   50    0    0    0    0    1
2  PR   50    0    0    0    1    1
3  PR   50    0    0    0    1    1
4  PR   50    0    0    1    0    1
5  PR   50    0    0    1    0    1
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.