Two-Dimensional arrays in C (and C++) are actually one-dimensional arrays whose elements are one-dimensional arrays. The indexing operator [] has left-to-right semantics, so for a type arr[N][M] the first index (with N elements) is evaluated first. The resulting expression, e.g. arr[0], the first element in arr, is a one-dimensional array with M elements. Of course that array can be indexed again , e.g. arr[0][1], resulting in the second int in the first sub-array.
One of the quirks in the C language is that if you use an array as a function argument, what the function sees is a pointer to the first element. An array used as an argument "decays" or, as the standard says, is "adjusted" that way. This is no different for two-dimensional arrays, except that the elements of a two-dimensional array are themselves arrays. Therefore, what the receiving function gets is a pointer to int arr[M].
Consider: If you want to pass a simple integer array, say intArr[3], to a function, what the function sees is a pointer to the first element. Such a function declaration might look like void f(int *intPtr) and for this example is simply called with f(intArr). An alternative way to write this is void f(int intPtr[]). It means exactly the same: The parameter is a pointer to an int, not an array. It is pointing to the first — maybe even only — element in a succession of ints.
The logic with 2-dimensional arrays is exactly the same — except that the elements, as discussed, have the type "array of M ints", e.g. int subArr[M]. A pointer argument to such a type can be written in two ways, like with the simple int array: As a pointer like void f(int (*subArrPtr)[M]) or in array notation with the number of top-level elements unknown, like void f(int arr[][M]). Like with the simple int array the two parameter notations are entirely equivalent and interchangeable. Both actually declare a pointer, so (*subArrPtr)[M] is, so to speak, more to the point(er) but perhaps more obscure.
The reason for the funny parentheses in (*subArrPtr)is that we must dereference the pointer first in order to obtain the actual array, and only then index that. Without the parentheses the indexing operator [] would have precedence. You can look up precedences in this table. [] is in group 1 with the highest priority while the dereferencing operator * (not the multiplication!) is in group 2. Without the parentheses we would index first and only then dereference the array element (which must therefore be a pointer), that is, we would declare an array of pointers instead of a pointer to an array.
The two possible, interchangeable signatures for your function therefore are
void function( int (*arrArg)[M] ); // pointer notation
void function( int arrArg[][M] ); // "array" notation (but actually a pointer)
The entire program, also correcting the problems Ted mentioned, and without printing the original values (we know them, after all), is below. I have also adapted the initialization of the two-dimensional array so that the sub-arrays become visible. C is very lenient with initializing structures and arrays; it simply lets you write consecutive values and fills the elements of nested subobjects as the come. But I think showing the structure helps understanding the code and also reveals mistakes, like having the wrong number of elements in the subarrays. I have declared the function one way and defined it the other way to show that the function signatures are equivalent. I also changed the names of the defines and of the function to give them more meaning.
#include<stdio.h>
#define NUM_ELEMS_SUBARRAY 4
#define NUM_ELEMS_ARRAY 2
/// @arrArg Is a pointer to the first in a row of one-dimensional
/// arrays with NUM_ELEMS_SUBARRAY ints each.
void add50ToElems(int arrArg[][NUM_ELEMS_SUBARRAY]);
int main()
{
// Show the nested structure of the 2-dimensional array.
int arr[NUM_ELEMS_ARRAY][NUM_ELEMS_SUBARRAY] =
{
{10, 11, 12, 13},
{14, 15, 16, 17}
};
// Modify the array
add50ToElems(arr);
// print results
for (int i = 0; i < NUM_ELEMS_ARRAY; i++) {
for (int j = 0; j < NUM_ELEMS_SUBARRAY; j++)
{
printf("value of arr[%d][%d]: %d\n", i, j, arr[i][j]);
}
}
return 0;
}
// Equivalent to declaration above
void add50ToElems(int (*arrArg)[NUM_ELEMS_SUBARRAY])
{
for (int i = 0; i < NUM_ELEMS_ARRAY; i++)
{
for (size_t j = 0; j < NUM_ELEMS_SUBARRAY; j++)
{
//arrArg[i][j] = arrArg[i][j] + 50;
arrArg[i][j] += 50; // more idiomatic
}
}
}
Why is it wrong to pass a two-dimensional array to a function expecting a pointer-to-pointer? Let's consider what void f(int *p) means. It receives a pointer to an int which often is the beginning of an array, that is, of a succession of ints lying one after the other in memory. For example
void f(int *p) { for(int i=0; i<3; ++i) { printf("%d ", p[i]); }
may be called with a pointer to the first element of an array:
static int arr[3];
void g() { f(arr); }
Of course this minimal example is unsafe (how does f know there are three ints?) but it serves the purpose.
So what would void f(int **p); mean? Analogously it is a pointer, pointing to the first in a succession of pointers which are lying one after the other in memory. We see already why this will spell disaster if we pass the address of a 2-dimensional array: The objects there are not pointers, but all ints! Consider:
int arr1[2] = { 1,2 };
int arr2[2] = { 2,3 };
int arr3[2] = { 3,4 };
// This array contains addresses which point
// to the first element in each of the above arrays.
int *arrOfPtrToStartOfArrays[3] // The array of pointers
= { arr1, arr2, arr3 }; // arrays decay to pointers
int **ptrToArrOfPtrs = arrOfPtrToStartOfArrays;
void f(int **pp)
{
for(int pi=0; pi<3; pi++) // iterate the pointers in the array
{
int *p = pp[pi]; // pp element is a pointer
// iterate through the ints starting at each address
// pointed to by pp[pi]
for(int i=0; i<2; i++) // two ints in each arr
{
printf("%d ", pp[pi][i]); // show double indexing of array of pointers
// Since pp[pi] is now p, we can also say:
printf("%d\n", p[i]); // index int pointer
}
}
}
int main()
{
f(ptrToArrOfPtrs);
}
f iterates through an array of pointers. It thinks that the value at that address, and at the subsequent addresses, are pointers! That is what the declaration int **pp means.
Now if we pass the address of an array full of ints instead, f will still think that the memory there is full of pointers. An expression like int *p = pp[i]; above will read an integer number (e.g., 1) and think it is an address. p[i] in the printf call will then attempt to access the memory at address 1.
Let's end with a discussion of why the idea that one should pass a 2-dimensional array as a pointer to a pointer is so common. One reason is that while declaring a 2-dimensional array argument as void f(int **arr); is dead wrong, you can access the first (but only the first) element of it with e.g. int i = **arr. The reason this works is that the first dereferencing gives you the first sub-array, to which you can in turn apply the dereferencing operator, yielding its first element. But if you pass the array as an argument to a function it does not decay to a pointer to a pointer, but instead, as discussed, to a pointer to its first element.
The second source of confusion is that accessing elements the array-of-pointers uses the same double-indexing as accessing elements in a true two-dimensional array: pp[pi][i] vs. arr[i][j]. But the code produced by these expressions is entirely different and spells disaster if the wrong type is passed. Your compiler warns about that, by the way.
functioniequalsN