i want to create a new columns for my df_cau2['continent']. first there r 2 df of mine:
country_continent
Continent
Country
Afghanistan Asia
Albania Europe
Algeria Africa
American Samoa Oceania
and
df_cau2
date home_team away_team home_score away_score tournament city country neutral
0 1872-11-30 Scotland England 0 0 Friendly Glasgow Scotland False
1 1873-03-08 England Scotland 4 2 Friendly London England False
2 1874-03-07 Scotland England 2 1 Friendly Glasgow Scotland False
to create new column continent i use apply for df_cau2 like this:
def same_continent(home,away):
if country_continent.loc[home].Continent == country_continent.loc[away].Continent:
return country_continent.loc[home].Continent
return 'None'
df_cau2['continent']=df_cau2.apply(lambda x: same_continent(x['home_team'],x['away_team']),axis=1)
df_cau2.head()
with 39480 rows of df_cau2, this code run too slow, how can i change my code to run it's faster? i am thinking about using np.select but i don't know how to use it's in this case.
This is result that i want:
date home_team away_team home_score away_score tournament city country neutral continent
7611 1970-09-11 Iran Turkey 1 1 Friendly Teheran Iran False None
31221 2009-03-11 Nepal Pakistan 1 0 Friendly Kathmandu Nepal False Asia
32716 2010-11-17 Colombia Peru 1 1 Friendly Bogotá Colombia False South America
Thanks