Your question piqued my interest because of how the date is defined. In the example below, data defined as hours-minutes-seconds is transformed to minutes and then compared to distance.
Sample code:
library(lubridate)
library()ggplot2
data$Time = hour(data$time)*60 + minute(data$time) # convert time to minutes
data$win <- ifelse((data$distance>data$Time), 1, 0)
data$win<-factor(data$win, levels=c("1","0"))
ggplot(data, aes(x=Time, y=distance, col=win)) +
geom_point()+
labs(x="Minutes", y="Meter", color="Effect")+
scale_colour_manual(values = c("1" = "green","0" = "red"))+
theme_minimal()
Plot:

Sample data:
data<-structure(list(time = structure(c(34, 334, 634, 934, 1234, 1535,
1834, 2134, 2434, 2734, 3034, 3334, 3634, 3935, 4234, 4534, 4834,
5135, 5434, 5735, 6034, 6335, 6634, 6935, 7235, 7534, 7834, 8134,
8434, 8734, 9034, 9334, 9636, 9934, 10235, 10534, 10834, 11136,
11434, 11734, 12034, 12334, 12635, 12934, 13236, 13534, 13835,
14134, 14435, 14735, 15035, 15334, 15635, 15934, 16234, 16535,
16834, 17134, 17435, 17734, 18035, 18334, 18635, 18935, 19234,
19535, 19834, 20134, 20435, 20734, 21035, 21335, 21635, 21935,
22235, 22534, 22834, 23134, 23434, 23735, 24036, 24334, 24635,
24934, 25235, 25535, 25834, 26134, 26434, 26735, 27034, 27335,
27635, 27935, 28234, 28534, 28835, 29134, 29434, 29734, 30034,
30335, 30634, 30934, 31235, 31534, 31834, 32135, 32434, 32735,
33035, 33335, 33634, 33934, 34236, 34535, 34835, 35134, 35434,
35735, 36034, 36334, 36634, 36934, 37234, 37536, 37836, 38134,
38434, 38734, 39034, 39335, 39634, 39934, 40234, 40535, 40834,
41135, 41436, 41734, 42034, 42335, 42634, 42934, 43235, 43534,
43835, 44134, 44434, 44735, 45034, 45335, 45634, 45935, 46234,
46534, 46834, 47134, 47434, 47735, 48034, 48335, 48634, 48935,
49235, 49534, 49834, 50135, 50434, 50735, 51034, 51334, 51635,
51934, 52234, 52535, 52835, 53134, 53435, 53734, 54034, 54334,
54635, 54935, 55237, 55536, 55839, 56136, 56436, 56735, 57034,
57334, 57635, 57934, 58235, 58534, 58838, 59135, 59437, 59734,
60034, 60334, 60634, 60934, 61235, 61534, 61835, 62134, 62435,
62734, 63035, 63335, 63635, 63934, 64234, 64534, 64834, 65134,
65434, 65734, 66035, 66334, 66634, 66934, 67235, 67534, 67834,
68133, 68434, 68734, 69034, 69334, 69635, 69934, 70235, 70534,
70834, 71134, 71434, 71735, 72034, 72334, 72634, 72934, 73234,
73535, 73834, 74134, 74435, 74734, 75034, 75335, 75634, 75934,
76234, 76534, 76834, 77134, 77434, 77734, 78035, 78335, 78634,
78934, 79235, 79534, 79834, 80135, 80434, 80735, 81034, 81334,
81634, 81934, 82233, 82534, 82834, 83134, 83434, 83734, 84034,
84334, 84634, 84935, 85234, 85534, 85834, 86135), class = c("hms",
"difftime"), units = "secs"), distance = c(21.489, 21.493, 21.669,
21.914, 21.92, 21.761, 21.708, 21.526, 21.718, 21.841, 22.055,
22.122, 22.125, 22.085, 22.001, 21.894, 21.828, 21.772, 21.754,
21.763, 21.77, 21.717, 21.671, 21.622, 21.529, 21.456, 21.506,
21.469, 21.424, 21.42, 21.268, 21.138, 21.153, 21.153, 21.12,
21.101, 21.072, 21.061, 21.251, 21.302, 21.374, 21.344, 21.302,
21.311, 21.407, 21.467, 21.506, 21.483, 21.457, 21.468, 21.326,
21.291, 21.229, 21.106, 21.12, 21.196, 21.471, 21.699, 21.823,
21.999, 22.26, 21.992, 21.696, 21.921, 21.762, 21.551, 21.506,
21.577, 21.682, 21.898, 22.041, 22.143, 22.236, 22.462, 22.766,
22.87, 23.056, 23.287, 23.499, 23.614, 23.849, 24.081, 24.274,
24.588, 24.746, 24.737, 24.763, 25.002, 25.046, 25.01, 25.027,
25.051, 25.051, 25.072, 25.048, 25.033, 24.982, 24.954, 24.856,
24.824, 24.87, 24.835, 24.734, 24.774, 24.734, 24.608, 24.534,
24.536, 24.458, 24.395, 24.29, 24.337, 24.392, 24.319, 24.22,
24.115, 24.108, 24.053, 23.926, 23.834, 23.827, 23.798, 23.702,
23.619, 23.509, 23.564, 23.727, 23.657, 23.675, 23.694, 23.572,
23.62, 23.702, 23.951, 23.902, 23.972, 23.992, 23.971, 23.976,
23.924, 23.877, 23.83, 23.802, 23.766, 23.689, 23.619, 23.541,
23.515, 23.384, 23.118, 22.919, 22.876, 22.904, 22.816, 22.719,
22.653, 22.588, 22.493, 22.518, 22.615, 22.609, 22.59, 22.418,
22.262, 22.34, 22.33, 22.314, 22.379, 22.415, 22.371, 22.242,
22.215, 22.308, 22.466, 22.411, 22.366, 22.533, 22.762, 22.863,
22.903, 22.915, 22.84, 23.138, 23.137, 23.391, 23.614, 23.898,
24.18, 24.434, 24.603, 24.965, 25.348, 25.791, 26.128, 26.674,
26.914, 26.892, 27.068, 27.413, 27.682, 27.996, 28.39, 28.621,
28.876, 28.808, 29.034, 29.339, 29.493, 29.553, 29.744, 29.994,
30.23, 30.087, 30.098, 30.109, 30.109, 30.156, 30.085, 30.226,
30.337, 30.325, 30.518, 30.629, 30.677, 30.854, 30.867, 30.818,
30.89, 30.863, 30.917, 31.255, 31.238, 31.222, 31.144, 31.132,
31.035, 31.081, 31.058, 30.884, 30.844, 30.715, 30.657, 30.521,
30.383, 30.114, 29.903, 29.595, 29.336, 29.104, 28.922, 28.618,
28.275, 28.108, 27.862, 27.749, 27.617, 27.387, 27.151, 26.963,
26.687, 26.583, 26.35, 26.072, 25.905, 25.738, 25.52, 24.979,
24.749, 24.601, 24.403, 24.204, 24.071, 24.048, 23.963, 23.677,
23.524, 23.463, 23.411, 23.273, 23.097, 23, 22.949, 22.854, 22.805,
22.815, 22.761, 22.699, 22.594), win = structure(c(1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("1",
"0"), class = "factor"), Time = c(0, 5, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110,
115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175,
180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240,
245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305,
310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370,
375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435,
440, 445, 450, 455, 460, 465, 470, 475, 480, 485, 490, 495, 500,
505, 510, 515, 520, 525, 530, 535, 540, 545, 550, 555, 560, 565,
570, 575, 580, 585, 590, 595, 600, 605, 610, 615, 620, 625, 630,
635, 640, 645, 650, 655, 660, 665, 670, 675, 680, 685, 690, 695,
700, 705, 710, 715, 720, 725, 730, 735, 740, 745, 750, 755, 760,
765, 770, 775, 780, 785, 790, 795, 800, 805, 810, 815, 820, 825,
830, 835, 840, 845, 850, 855, 860, 865, 870, 875, 880, 885, 890,
895, 900, 905, 910, 915, 920, 925, 930, 935, 940, 945, 950, 955,
960, 965, 970, 975, 980, 985, 990, 995, 1000, 1005, 1010, 1015,
1020, 1025, 1030, 1035, 1040, 1045, 1050, 1055, 1060, 1065, 1070,
1075, 1080, 1085, 1090, 1095, 1100, 1105, 1110, 1115, 1120, 1125,
1130, 1135, 1140, 1145, 1150, 1155, 1160, 1165, 1170, 1175, 1180,
1185, 1190, 1195, 1200, 1205, 1210, 1215, 1220, 1225, 1230, 1235,
1240, 1245, 1250, 1255, 1260, 1265, 1270, 1275, 1280, 1285, 1290,
1295, 1300, 1305, 1310, 1315, 1320, 1325, 1330, 1335, 1340, 1345,
1350, 1355, 1360, 1365, 1370, 1375, 1380, 1385, 1390, 1395, 1400,
1405, 1410, 1415, 1420, 1425, 1430, 1435)), row.names = c(NA,
-288L), spec = structure(list(cols = list(time = structure(list(
format = ""), class = c("collector_time", "collector")),
distance = structure(list(), class = c("collector_double",
"collector")), win = structure(list(), class = c("collector_character",
"collector"))), default = structure(list(), class = c("collector_guess",
"collector")), delim = ","), class = "col_spec"), class = c("spec_tbl_df",
"tbl_df", "tbl", "data.frame"))
?scale_color_manual, which is the most common way to specify specific colors for specific values.