3
import cv2
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from keras import Sequential
from tensorflow import keras
import os

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = tf.keras.utils.normalize(x_train, axis=1)
x_test = tf.keras.utils.normalize(x_test, axis=1)


model = tf.keras.utils.Sequential()
model.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.compile(optimizer='adam', loss='spare_categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=3)
model.save('handwritten.model')
Traceback (most recent call last):
  File "C:\Users\DELL\PycharmProjects\NeuralNetworks\main.py", line 15, in <module>
    model = tf.keras.utils.Sequential()
AttributeError: module 'keras.api._v2.keras.utils' has no attribute 'Sequential'
Process finished with exit code 1**

1 Answer 1

3

You should be using tf.keras.Sequential() or tf.keras.models.Sequential(). Also, you need to define a valid loss function. Here is a working example:

import cv2
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from keras import Sequential
from tensorflow import keras
import os

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = tf.keras.utils.normalize(x_train, axis=1)
x_test = tf.keras.utils.normalize(x_test, axis=1)


model = tf.keras.Sequential()
model.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=3)
model.save('handwritten.model')
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.